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A b s t r a c t

This dissertation is a collection of three essays in Operations Management and Man

agement Science.

Chapter 1 considers a problem where consumers learn about the possibility of ’’last- 

minute” discounts (typical of travel industries) and strategically wait for them. We present 

a stylized model of aggregate consumer behavior where the firm puts a number of units 

on sale to maximize its current and future revenue, given that the fraction of customers 

waiting, and, hence, the revenue in the future, changes depending on the firm’s decisions. 

We formulate the problem as a dynamic program and develop a novel solution approach. 

We consider several model variations and show that the firm’s optimal policy depends on 

the learning behavior: it is either ’’passive”, where the firm puts some units on sale and 

allows consumers to ”self-regulate” future waiting, or it is an ’’active” ”bang-bang” policy, 

where the firm intermixes the periods with many units on sale with those with none and 

thus manages consumer waiting. We discuss managerial insights and show that the firm 

can strategically allow overbooking to increase its revenue.

Chapter 2 studies the problem of constructing balanced work groups (i.e., containing ap-
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proximately equal proportion of members with different gender, age, cultural backgrounds, 

and other relevant attributes), based on a practical problem of assigning MBA students to 

study groups. We view balancing requirements as constraints, develop efficient user-friendly 

software, discuss its implementation and report major improvements in all aspects of stu

dents’ group work. We also discuss a problem of creating multiple lists of non-overlapping 

groups, which is unique to our work.

Chapter 3 explains the empirical phenomenon that the constraint programs resulting 

from the real-world problems in Chapter 2 always had solutions. From the worst-case 

perspective this need not be the case for in most cases there exist instances with few (e.g., 

three) attributes where balanced groups cannot be constructed. However, via a variety of 

techniques (dynamic programming combined with simulation, analytical upper bound and 

empirical lower bound) we find that the probability that a random instance similar to those 

observed in practice can be partitioned into balanced groups is effectively 100 percent.

in
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Chapter 1

Revenue M anagem ent through Last 

M inute Deals in the Presence of  

Custom er Learning

1.1 Introduction

Over the last several years there has been rapid growth in online purchases of airline tickets 

and other travel-related products. Forrester Research estimates that “Web travelers now 

make up 79% of the U.S. travel population, and 55% of them buy leisure travel online” 

(Hartveldt et al. 2006). This growth has presented a number of opportunities and challenges 

for travel-related firms. These include the ability and need to rapidly change the prices 

and availability of inventory, to track and respond to competitor moves, and to address 

changes in consumer behavior, as the full array of options for consumers are more easily 

found through Web searches.

This increase in online business has also provided the capability to place inventory that

1
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is not selling at the expected rates (so-called “distressed” inventory) on sale in the days 

immediately prior to a departure of a flight or other product, such as a hotel room night, 

vacation package, or a weekend car rental. That is, the “last-minute” in the title may 

not literally be the last minute, but rather it is a moment of price reduction in the days 

leading to a departure. For consumers, such last-minute deals present an opportunity to 

purchase products at noticeably lower prices. For example, a quick search for a week-long 

all-inclusive vacation departing in an approaching weekend in the fall of 2006 produced 

choices for less than $400; this compares with prices in excess of $1,000 available months 

in advance.

Given tha t last-minute deals are so great, it was not long before “many savvy travelers 

... noticed it” (Michael Sands, CMO of Orbitz, quoted in Stinger 2002). Increasingly, 

though, more than just savvy travelers are learning to expect last-minute deals and “prefer 

to book later in the hope of getting a good deal” (Fenton and Griffin 2004). According to 

research by American Express, “nearly half of all travelers say they intend to wait until the 

last minute to plan their vacations” (De Lisser 2002). Similarly, in private conversations, 

executives of a leading vacation tour operator noted that as a result of customer waiting 

for the deep discounts mentioned above, early bookings are “slow” and 27% of the bookings 

are made in the last 15 days. That is, because customers act strategically and increasingly 

come to expect last-minute sales, the discounts that were meant to help sell distressed 

inventory turned out to cause more units to be distressed. As a result firms sell more 

units at a discount and thus lose revenues, since in the absence of strategic waiting for 

discounts, some of these units could have been sold at higher prices. This suggests that 

firms should carefully consider strategic consumer response and incorporate it into their 

revenue management policies.

The goal of this paper is to develop a stylized model that incorporates strategic customer 

response to revenue management. The natural setting for such a model is a travel firm (a

2
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tour operator, car rental firm, hotel, airline, etc.) determining the number of units (seats, 

cars, rooms, etc.) to put on last-minute sale in the days prior to a departure. We consider 

cases with two and three customer classes purchasing inventory in a multiple-period (week, 

flight, etc.) setting. In each period, a fraction of the customers purchase at a regular, 

nondiscounted price and a fraction waits for a potential last-minute sale. This fraction 

changes as customers learn to expect such sales and adjust their behavior to take advantage. 

Customers who wait, but do not receive inventory at the discounted price, may be offered 

inventory for purchase at a higher price. The decision faced by the firm is to determine the 

number of units (if any) to put on last-minute sale in each period.

Our initial model with two customer classes (and two prices) reflects such industries 

as packaged vacations and performance events, where a common practice of prepublishing 

prices in catalogs effectively reduces the firms’ ability to increase prices in the case of high 

demand. Our three classes (prices) model captures the examples of airlines, car rental 

firms, and hotels that can increase the price if there are customers willing to spend more 

for the product. We study the limited number of classes in order to derive optimal policies 

in this complicated multiple-period model. In practice, revenue management techniques 

with multiple fare classes would be undertaken prior to offering a last-minute discount.

In our general model, we allow both the total demand in a period and the number of 

customers waiting to be stochastic. We introduce two learning behaviors and, under some 

regularity conditions on customer demand and behavior, we show that the number of units 

to put on last-minute sale is uniquely determined. In particular, we show that for some 

demand levels and expectations of customer behavior, it is optimal to place no units on 

sale. We observe that the firm, in expectation, follows a pattern of offering last-minute 

deals to increase the number of customers waiting, and then periodically puts no units on 

sale, generating revenue from customers then forced to purchase at a higher price, and at 

the same time controlling future waiting.

3
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Our work is different from previous research in a number of dimensions. First and 

foremost, we consider a series of a firm’s revenue management decisions, which influence 

customers’ behavior for the future periods. To the contrary, the vast majority of the re

search in revenue management considers a single selling period (flight, etc.), and effectively 

ignores the possible effects on future periods. Second, we incorporate the “double” uncer

tainty of both stochastic total demand and stochastic number of customers waiting. We 

show that the resulting dynamic programming model is not amenable to standard solution 

methodologies. We generalize our case to a subclass of dynamic programs and suggest a 

new solution approach. Third, we derive the optimal policy in the closed form for three 

simplified models. Finally, we discuss the effects of different patterns of consumer behavior 

with respect to the types and speed of learning, and with respect to overbooking.

The main contribution of this paper is the proposal and solution of a model of strate

gic response to revenue management that reflects both stochastic demand and stochastic 

customer behavior. Further, by restricting either of these stochastic elements to a deter

ministic form, we provide closed-form solutions for our problem while relaxing several of 

the previous assumptions. Through numerical studies we document the degree to which 

the optimal solution provides benefits over reasonable policies such as discounting excess 

inventory based on a coin flip or using naive rule-based policies. In addition, we make 

a theoretical contribution by presenting a solution methodology to a subclass of dynamic 

programs in which the state of the system evolves nonmonotonically.

The remainder of the paper is as follows. In Section 1.2 we review the relevant lit

erature. In Section 1.3 we introduce the model and describe the two types of learning 

behavior. In Section 1.4 we study the optimal policy for two customer classes under the 

assumption of “self-regulating” learning, and present the solution to the resulting dynamic 

program. The case of “smoothing” learning is discussed in Section 1.5, where we introduce 

two simplifications to our general model and present their optimal policies in the closed

4
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form. In Section 1.6 we extend our models to the case with three customer classes, and 

discuss the effects of overbooking on customer behavior and on the resulting optimal policy 

of the firm. Numerical results are presented in Section 1.7, followed by the conclusions and 

prospects for future research.

1.2 Literature Review

Revenue management has been an active area of research for some time. We review only the 

literature directly related to the current study. McGill and van Ryzin (1999), Bitran and 

Caldentey (2003) and the recent book, Talluri and van Ryzin (2004) provide comprehensive 

reviews of the broader literature. Most previous research focusses on pricing and inventory 

policy for either a single flight or product, or a network of flights or multiple products, 

where strategic response by customers to the determined policy is ignored. For example, the 

fundamental work of Belobaba (1989) assumes that demand depends only on the price for 

the current flight and not on any previous pricing policy. Similarly, Gallego and van Ryzin 

(1994) and Bitran and Mondschein (1997), who discuss determining the optimal pricing 

policy for demand over time, also do not consider the strategic response of customers to 

the stated pricing policy.

All of the literature mentioned above deal with a single selling season (flight, etc.). 

Relevant work that considers multiple selling seasons includes papers on intertemporal 

price discrimination and advance selling, such as Stokey (1979), Sobel (1984), and Conlisk 

et al. (1984). A summary of retail pricing can be found in Lazear (1986). Besanko and 

Winston (1990) and Gale and Holmes (1993) discuss the optimal price skimming by a 

monopolist. Dana (1999), Xie and Shugan (2001), and Tang et al. (2004) discuss advance 

selling. These works do not consider customer learning and in this regard are different 

from ours. Customer learning is often modeled through reference price effects; for example,

5
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consider Greenleaf (1995) and Popescu and Wu (2005). These models do not consider the 

internal dynamics of selling to several classes of customers within each selling season, which 

is a major feature of revenue management systems.

A newsvendor problem with two customer classes is considered in Sen and Zhang (1999), 

whose increasing prices model is similar to our model in the single period. We note that 

they do not study repetitive problems and customer learning.

W ithin the research on revenue management, only recent work directly relates to ours in 

considering of how customers strategically react to the pricing policy of the firm. Anderson 

and Wilson (2003), Aviv and Pazgal (2003), and Elmaghraby, Gulcu and Keskinocak (2004) 

consider a problem somewhat reverse to ours, where customers react strategically to a preset 

policy of the firm. Levin et al. (2006) examine a dynamic game between the firm and 

strategic consumers, and Su (2006) considers a case when a part of consumer population 

acts strategically. These papers consider a single selling season as well. Anderson and 

Wilson (2006), Liu and van Ryzin (2006) and Zhang and Cooper (2006) study the behaviors 

of the firm and strategic customers over two subperiods within a single selling season.

A multiple-period setting similar to ours is considered in Cooper, Homem-de-Melo and 

Kleywegt (2004), who model the “spiral-down” effect and demonstrate that in the multiple- 

period problem with customer learning the effect of otherwise optimal (single-period) rev

enue management policy could be significantly diluted. This suggests that the optimal 

multiple-period pricing policy is different and worth studying. The current paper develops 

such a policy.

1.3 M odel

Next we present a stylized model followed by a discussion of our modeling approach and 

the assumptions we make. Figure 1.1 depicts the timeline of the model and main notation.

6
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P2

Pi

st |0,

Mt =Y,D2

YA x,

Overflow demand [B, - (N-Srx /] '

If overbooking is not allowed, 
then this demand is lost.

If overbooking is allowed 
then some units bought at p , are
denied and this demand is 
accommodated.

Beginning 
of period t

"Last minute” 
of period t

End of period t, 
Inventory, N

Beginning 
of period t+1

Figure 1.1: Timeline of the model.

1.3.1 Form ulation

Consider a sequence of identical offerings of a perishable product or service, for example, 

weekly all-inclusive vacations at the same resort, Wednesday morning flights from London 

to New York, or weekend car rentals. To distinguish between the copies of the product 

offerings, we assume that they are offered in different periods, and that there is one offering 

per period. In each period t =  1, 2, ...T, for finite T, there are N  units of product available, 

and the firm decides whether it should offer a last-minute deal on a part of its inventory.

We initially assume that there are two customer classes: i = 1,2. Let p, be the highest 

price that class i is willing to pay for the unit of product, and, without loss of generality, 

we assume P 2 > P i  (an extension to three prices/customer classes is presented in Section 

1.6). Demand from class i in period t reflects a nominal demand, and an exogenous 

stochastic multiplier, Yt, representing, for example, weather or exchange rate. We assume 

that the demand from class i in period t is Ytd,. Thus the total nominal demand at price 

i is Di = J2j=i dj, i =  1, 2 , and the total demand at price i in period t therefore is YtDj. 

We assume Y t is a random variable with finite support on [y,y],  where y D 2 < N. For 

simplicity we treat all demands and capacities as continuous variables, and for 0, A 

units of inventory fill A units of demand.

At the start of period t the firm initially sets the price at p2 and by some “last minute”

7
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observes the initial sales, St € [0 , YtD2], to its class-2 customers. The remaining M t = 

YtD 2 — St class-2 customers wait for a discount; also waiting are all Ytd\ class-1 customers 

for a total of YtD\ — St customers waiting. We assume that S t is a random variable whose 

cdf, Fst\et (-), is parameterized by a value, 6t) that represents the propensity of customers to 

wait for a discount -  the waiting behavior. For example, there could be a random fraction, 

a t , of class-2 customers waiting (then S t = (1 — a t)YtD2) and Qt could be the average 

fraction waiting. We refer to St as the demand signal and assume 6t is known to the firm 

prior to observing St (e.g., through consumer research).

At the “last minute” of period t the firm determines x t, the number of unsold units 

(possibly zero) to put on sale at price p\. To do so, knowing 6t and having observed St, the 

firm estimates the demand multiplier, Yt, and, hence, the number of customers of each class 

waiting. Let Yt =  Yt \(6t, St) be the random variable representing the demand multiplier Yt 

conditional on (6t ,S t). If x t > YtD x — St then all waiting demand is satisfied. Otherwise, 

some class-2 customers may still be unserved, and we assume that their number is given 

by the allocation function B t(St ,x t ,Y t). To accommodate these B t{-) class-2 customers the 

firm offers all the inventory remaining after the last-minute sale again at P2  (in Section 1.6 

we discuss an extension where the remaining units are offered at price pz > pS)- If the 

remaining class-2 demand exceeds the remaining capacity, the firm may overbook*. In this 

case the firm denies some of the units purchased at price pi and sells them at p2 to the 

remaining class-2 customers (the overflow demand). For doing so the firm incurs a penalty, 

Pc, per unit. We assume that customers denied product because of overbooking cannot 

purchase a unit in the same period. We consider cases when the firm overbooks and when 

it does not, and comment on when the firm benefits from strategically allowing overbooking 

(Section 1.7.1).

*Here, the term “overbooking” refers to intentionally selling some units of capacity twice; it does not 

refer to the practice of selling more units in anticipation of a cancelation -  for simplicity we do not consider 

cancelations.

8
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The total revenue of the firm net of the overbooking cost for period t  given (St , x t ,Yt)

is

gt (St , x t ,Yt) =  p2St + p 1min[xt ,YtD 1 -  St] (1.1)

+  p2B t(St ,x t ,Y t) - p c  (.Bt(St ,x t ,Y t) -  (N - S t -  x<)) +

noting that overbooking occurs only when YtD\ — St > x t . The expected single-period 

revenue in period t  given 6t and observing St is

rt{Ot,S t , x t) = f  gt (St , x t ,y)dFyt (y). (1.2)
J y

where Fy(y) = Fyt\(et,St)(y) is the cdf of Yt, demand multiplier Yt conditional on (9t . S t).

We refer to the 2-vector as to the state of the system. We assume that the

system evolves based on the decision x t according to a function h(9t, x t), defining 9t+1, 

and a random draw of St+1 from the distribution of future sales, Fst+1\gt+1(-)- We refer to

h(-) as the learning function because it reflects the changes in the waiting behavior of the

customers as they learn about the policy of the firm. We define two types of the learning 

functions:

(i) smoothing, if >  0 and | |  > 0, e.g., h(0,x) =  +  (1 — \)9  for 0 <  A <  1;

(ii) self-regulating, if >  0 and <  0, e.g., h(6,x) =  k +  A^ — (1 — A)^ for {k ,X > 

0|k +  A <  1}.

The objective of the firm is to maximize the expected T-period revenue, discounted at 

a fixed rate 5 G (0,1). Therefore,given the initial 6\, the firm determines the number of 

units on sale, x t , for each period t = 1, 2, ...T by solving the following dynamic program

Jt(9t,S t , x t) =  rt (6t, St,xt)  +  SEst+1\et+1 [Jf+i($m> -Sm)] (1.3a)

9
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where

St (fiti Sf) maxo<Xt<iv-st Jt{9ti St,xf) 

subject to
(1.3b)

Jf+\ (Ot + i -, S t + i ) = 0 for all (0x+i, S t + i )

9t+1 — ht{9t,xf)

We refer to (1.3.1) as to the general model, as it reflects the uncertainty in the overall 

demand as well as in the fraction of class-2 customers waiting in every period. In Section

1.5 we consider simplified models, where alternately one or the other of these uncertainties 

is removed.

Finally, we make several assumptions on the stochastic ordering of the random variables. 

A family of random variables Xg with cdf Fx(x:  8) is stochastically increasing (concave, su- 

permodular, etc.) in parameter 0 iff 1 — Fx{x\ 6) is increasing (concave, supermodular, etc.) 

in 9 for any x  from the support of X .  We assume that (i) St is stochastically decreasing 

in 6t; (ii) Yt is stochastically increasing in Sf \ and (iii) Yt is either stochastically increasing 

or decreasing in 9t. These assumptions are consistent with the following intuitive observa

tions. Since 6t measures the propensity of customers to wait, the number of customers who 

purchase (i.e., do not wait), S t, should decrease in 6t. Similarly, more customers purchasing 

at the initial price implies higher overall demand, thus Yt should increase in St. However, 

since the total demand from class-2 is YtD2 =  St + Mt, the effects of increasing 9t on 

the conditional demand multiplier, Yt could be twofold. Specifically, if M t increases faster 

than St decreases, then Yt would increase in 0t. Otherwise, Yt could decrease in 9t. In our 

analysis in Sections 1.4 - 1.6 we use these assumptions in order to establish monotonicity 

properties of revenue function. To do so we require the following fundamental theorem:

Theorem  1.1 (3.9.1 in Topkis 1998) I f  T  is a subset of R m, { F x ( x ; 8 )  : 9 G T} is 

a collection of distribution functions, and T  is a closed (in the topology of pointwise 

convergence), convex cone of real-valued functions on T, then for any increasing set S,

10
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Js dFx (x-,d) is in T  iff f s v( x)dFx(x]0) is in F  for any increasing real-valued function 

v(x).

1.3.2 D iscussion

A ggregate D em and. We consider a model where rather than tracking the detailed ar

rival dynamics of individual customers, the firm focuses on the aggregate behavior of cus

tomer classes. In particular, we assume that the firm knows the value, Bt, that parameterizes 

the fraction of customers in class-2 who wait for the last-minute deal. This value is then 

updated in each period based on the outcome of the previous periods.

Our modeling approach is motivated by many discussions with revenue management 

executives, who noted that in a multiple-period setting like ours, customers who purchase 

products in different periods are typically different individuals, and it is rather unclear 

how these individuals react to the pricing policy of the firm or even if they have accurate 

information about it at all. At the same time, the firm is predominantly concerned not 

with the behavior of each individual customer, but rather with an aggregate outcome of 

these individual behaviors -  the aggregate demand. These executives further noted that 

there exists aggregate-level information, such as industry reports, news articles, or word-of- 

mouth, through which aggregate demand reacts to the pricing policy of the firm. Therefore 

in designing its pricing policy over multiple selling seasons, the firm could consider a model 

of aggregate demand that comes from classes of customers, where these aggregate classes 

and not the individual customers react to such information that in turn is updated to reflect 

pricing policies.

W aiting Param eter and W aiting Fraction. Our key differentiating assumption from 

previous work is that the fraction of class-2 customers who wait in period t is described by 

a parameter, 6t, representing, for example, the average fraction of customers waiting. This

11
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waiting parameter is a proxy for the aggregate-level information about waiting. Customers 

learn based on the firm’s decision, x t , and 6t changes over time, determining the fraction 

of customers who wait in the future.

In practice there are two factors that lead to the existence of such a waiting fraction, 

and, more generally, to the environment where some customers wait and some buy early: 

anxiety/risk and anticipation. Customers who wait for a last-minute deal may experience 

anxiety and risk because they are not guaranteed a product. If the firm does not overbook, 

class-2 customers who wait risk not obtaining a product if the total number of customers 

waiting exceeds the remaining inventory. If the firm does overbook, class-2 customers who 

wait and book at price pi are indistinguishable from the customers of class-1 and thus can 

be denied a product if the unit they were promised is resold at a higher price after the 

last-minute sale (i.e., overbooked). Therefore, for a class-2 customer who decides to wait 

or buy, the positive utility from potential savings of P2 — Pi > 0, is offset by a disutility 

from anxiety and risk caused by a possibility of not getting a product at all. Overbooking 

as we describe is common in the packaged vacation industry where overbooked customers 

have little recourse other than accepting the alternate arrangements proffered by the firm 

plus any accompanying compensation.

Also, researchers in marketing (e.g., Nowlis et. al. 2004) and economics (e.g., Loewen- 

stein 1987) showed that for “pleasure” products, of which a vacation is a classical example, 

there exists a positive utility of anticipation. That is, provided that the price is unchanged, 

customers who purchase a product earlier obtain a higher utility from consuming it. We 

note tha t the utility of anticipation is widely recognized by executives in the vacation in

dustry as one of the drivers of early purchases. In the context of an individual customer’s 

wait-or-buy decision, utility of anticipation creates another tradeoff against waiting, in ad

dition to that from anxiety and risk. Heterogeneity of the customer population with respect 

to valuing such time and risk tradeoffs (Chesson and Kip Viscussi 2000) naturally yields the
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aggregate outcome that some customers wait and some purchase early, which is observed 

in practice and is reflected in our model through waiting parameter 6t.

A llocation  o f D iscounted U nits. In practice, discounted units are sold on the “first 

come, first served” basis and the class of the customer is not known. Thus B t(St, x t ,Y t) is 

a result of a random draw in which, for example, all waiting customers could have equal 

probability of buying a discounted product; then B t (-) would have a hypergeometric distri

bution. However, incorporating random allocation leads to an untractable model, in part, 

because it requires treating the demands and capacities as integers. Therefore, we consider 

deterministic allocation mechanisms. In Sections 1.4 and 1.5, respectively, we discuss two 

forms of proportional allocation depending on the nominal or realized demands (Talluri and 

van Ryzin 2004, pp. 330 call such mechanisms “proportional rationing”). Our proportional 

allocation based on realized demands simplifies B t(-) to be equal to the expected outcome of 

the above-mentioned random allocation. In Section 1.7.3 through numerical simulations we 

document tha t the optimal policy obtained with such a simplification is very robust: that 

is, the revenue generated by such a policy is only marginally different from that resulting 

from the policy optimal under random allocation.

Fixed D iscounted Price p i. In general, firms could determine both the quantity to dis

count and the sale price for each period. Analyzing both variables simultaneously, however, 

leads to a very complex multi-period model, since doing so would requires understanding 

the customer’s perception of how quantity complements/substitutes for price. For example, 

we would need to make assumptions on the effect on future customer waiting for the case 

when the firm offered only few units on sale, but the price was very low, as opposed to 

the case when the firm put many units on sale, but the discount was small. Therefore, 

in attem pt to create a stylized parsimonious model we assume that the p ,’s are fixed for 

the entire T  periods and concentrate on the quantity decision. Furthermore, research has
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shown that a heuristic that charges the properly chosen single price instead of a dynamic 

price often performs just marginally suboptimally (e.g., Gallego and van Ryzin 1994). In 

Section 1.7.2 we demonstrate how one might determine the optimal static discount price 

while dynamically optimizing the quantity to discount.

Learning Behaviors. Finally, we investigate both self-regulating and smoothing func

tions h(9t, x t), in Sections 1.4 and 1.5, respectively. For the kind of “smoothing” functions 

that we presnet in the example, the next period’s waiting parameter, 0t+1, lies between 

9t and x t, so that the decision x t is “smoothed” into the previous belief, 9t . Smoothing 

functions of such a form represent the standard moving average forecasting and are fre

quently used (e.g., Greenleaf 1995, Popescu and Wu 2005). Alternately, “self-regulating” 

functions reflect the following behavior: as the total number of waiting customers increases, 

the chances to obtain a product on sale decrease for an individual customer, which neg

atively affects the number of customers waiting. If few customers are waiting, then this 

individual’s chances of obtaining a product at a discount increase, facilitating waiting; that 

is, customers “self-regulate”.

In Section 1.4 we show that for the case with a self-regulating learning function, the 

revenue function is concave in the number of units on sale, xt, for every t. To do so we 

develop the necessary methodology to prove concavity and show that in addition to being 

concave, the expected single-period revenue rt(9t , S t , x t) is also required to be supermodular 

and increasing. We note that our approach to showing concavity differs from standard 

methodologies for showing optimality of monotone policies, such as Topkis (1998) Section 

3.9.2, Putterm an (1994) Section 4.7.3, or their recent extensions, e.g., Smith and McCardle 

(2002). In their models the state of the system evolves monotonically in the previous state 

and decision. That is, the components of the state vector either increase or decrease in the 

previous state and decision. To the contrary, in our general model (1.3.1), state transitions 

are not monotonic, since St is stochastically decreasing in 9t, while 9t is increasing in either
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dt- \  or Xt-1, or both.

In Section 1.5 we study the case with a smoothing learning function and show that in 

general concavity does not hold, unless the speed of customer learning is “slow.” Then we 

consider two simplifications to the general model and derive their solutions in closed form. 

Section 1.6 presents a model with three customer classes, for which the type of learning 

behavior does not influence the determination of the optimal policy.

1.4 Optim al Policy for Self-Regulating Learning

In this section we derive the conditions under which the revenue-to-go function is concave 

when the learning function, h(-), is self-regulating. We organize this section as follows. 

First in Section 1.4.1 we assume that the single-period expected revenue function, r(6, S, x), 

given in (1.2), is concave, supermodular and increasing, and we show that these properties 

hold for St , x t) for all periods. Then in Section 1.4.2 we discuss the properties of the 

revenue function g(S, x, y), given in (1.1) and other parameters of the model, which ensure 

concavity, supermodularity and monotonicity of r(9,S,x).  We conclude by presenting an 

example.

1.4.1 C oncavity in D ynam ic Program s W ith  N onm onotonic S tate  

Transitions

Observe from (1.3a) that since 9t+1 =  ht (9t , x t) is independent of St, the expected fu

ture revenue, Est+1\et+1 [J^+1(9t , 5t)] , also does not depend on S t and therefore, letting 

4>t+i{ht{9t,xt)) = E St+i|0t+1 [ J ^ ^ t .S 't ) ]  we can substitute

Jt (Ot , S t, x t) = rt(6u S t, x t) + 5(pt+1(ht(9t,xt)) (1.4)

where the function (j)t+x can be interpreted as the expected future revenue.
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We assume that rt(6t, St ,x t) is (A l) jointly concave in (9t ,x t), (A2) supermodular in 

(9t,S t,x t), (A3) increasing in St: (A4) St is stochastically decreasing and concave in 6t, 

and (A5) ht (9t, x t) is linear self-regulating, i.e. §£§§ < 0, and 0  =  = 0.

Concavity and supermodularity in (1.4) are related by the following lemma (all proofs 

are presented in the appendix):

Lem m a 1.1 I f  (f>t+i is concave in ht, then Jt is concave in x t and supermodular in (0, S, x).

Proof. Recall tha t by assumption (A5) h is linear.

(i) Concavity follows from

since r  is concave in x  by assumption (Al) and <p is concave in h by the condition of the 

lemma.

(ii) Supermodularity in (9, x) follows from

dxdO ’ ’ dxdd ’ ’ 3/i2 dx 89

since r  is supermodular in (9,x) by assumption (A2), 4> is concave in h by the condition of 

the lemma and h is self-regulating by assumption (A5).

(iii) Supermodularity in (6, S ) and (S, x ) follows from (A2) because 0 does not depend on 

S. Supermodularity in multiple dimensions is equivalent to supermodularity in each pair 

(Topkis (1998), Theorem 2.6.1). I

Therefore in order to establish that Jt is concave in x t it is sufficient to show that 0t+i 

is concave in ht, which in our original notation corresponds to Est+1\$t+1 ( ^ , i, <S)+i)] be

ing concave in 9t+1. Let f St+1 (y\8t+1) be the density of St+1 given 8t+1. Then E St+1\et+1 [J?+l(9t+1, S'i+1)] 

/  J;+i(dt+i,y)fst+1 (y; 9t+\) dy. Concavity of this integral is established by the following
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lemma, which extends Theorem 1.1 to the case where the integrant depends on the param

eter.

Lem m a 1.2 Let a family of univariate random variables X g  with cdf Fx (x;9) and density 

f x  (x ; 0) be stochastically decreasing and concave in scalar parameter 0. Let v(9, x ) be 

supermodular in (9, x), increasing in x and concave in 9. Then f  v(9, x)dFx {x; 9) is concave 

in 9.

Proof. Let 9 be an arbitrary fixed value of 9.

Then

~  (^J v{9,x)dFx{x,9)^j \0=§ = ~  ^  f x {x]9)dx + J  v (9 ,x ) - ^ f x (x\9) dx^j \

=  J  Ie = e f x ( F 0 ) d x  +  2 J  (J ^ v (9 ,x )^ j \9=§d x

+ J  v(9,x) ( J ^ f x i x ^ ) ^  l^ d z

~  2 J  + / v $ ’ x ) \<>=§dx

< J v(9,x) f x ( x ; 9 \ g=§dx
2 /»

=  gjp J  v(9,x)dFx (x;9)

<  0

The first inequality follows from the concavity of v(9, x) in 9. The second inequality follows 

by Theorem 1.1 because v(9,x) is supermodular (i.e. dv/d9 is increasing in x), while X #  

is stochastically decreasing. Finally, the third inequality results from Theorem 1.1 because 

v(9, x) is increasing in x  and X g  is stochastically concave. ■

We also require the following two results:

Proposition  1.1 (follows from Theorem  5.3 in Rockafellar 1997) I f f (x ,9 )  is jointly 

concave in (x,9), then supXf(x ,9)  is concave in 9.
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Proposition  1.2 (Theorem  2.7.6 in Topkis 1998) If  f(x ,d) is supermodular in (x, 6),

then supx f ( x , 6 ) is supermodular in 6.

Our main result in this Section is given by the following Theorem.

Theorem  1.2 Under assumptions A l  — A5, Jt(Ot, St,x t) is concave in x t and supermod

ular in (6t, St, x t) for all t = 1,2, ...T.

Proof. For t = T  the claim holds by assumptions (Al) and (A2) respectively. Let 1 < t <

T  and suppose that for every period n € [t + 1, T]: (II) J*(9n, Sn) is increasing in Sn; (12) 

J*(0n, Sn) is concave in 6n and (13) J*(dn, Sn) is supermodular in {0n, Sn).

W ith assumptions (A4) and (I1)-(I3) following Lemma 1.2, <̂t+1 is concave in ht, and 

therefore with assumptions (Al), (A2) and (A5) by Lemma 1.1, Jt(8t, St,x t) is concave in 

x t and supermodular in (8t. St, x t).

For period t: (II) follows from (A3) since <pt \ i does not depend on St: (12) follows by 

Proposition 1.1 from (Al), since (A5) implies that the Hessian o f < f ) t + i  equals (§|)2 ( f |)2

(§ y § ) )  — 0; (13) follows by Proposition 1.2 since Jt(9t,S t ,x t) is supermodular in 

(0t,St , x t). U

Problem (1.3.1) defines a subclass of dynamic programs for which a vector of the system 

state is not monotonic in the previous period’s state and decision. In this section we have 

shown how to establish concavity for such dynamic programs. A similar logic with a

different set of initial assumptions could be used to prove other properties, for example,

convexity. We also note that to our knowledge there is no published research dealing with 

concavity (convexity) in the dynamic programs with nonmonotonic transitions. As such 

this is a technical contribution of our paper.

Next we discuss the underlying conditions on the customer behavior which ensure that 

concavity holds.
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1.4.2 A llocation  Functions

Recall that the allocation function, B(S, x, Y).  determines the number of class-2 customers 

that remain after the last-minute sale. In this section we study the properties of B(S, x, Y)  

and the other parameters of the model which ensure that the expected single-period revenue 

function, r(6,S ,x),  is concave, supermodular, and increasing. We show that if B ( S , x ,Y )  

satisfies the assumptions (B1)-(B6) presented below, and the prices and demand multipliers 

satisfy some regularity conditions, then r(6, S , x) is concave, supermodular and increasing, 

and therefore by Theorem 1.2 the revenue-to-go is concave for every period. Since the 

discussion relates to a single period, time indices are omitted.

We assume the following properties of the allocation function, B (S ,x ,Y ) :  B l:  B  is 

supermodular, increasing in Y  and decreasing in S  and x; B2: d B / d x  >  — 1; B3: d B / d S  > 

—1; B4: if x > yD\  — S  then B(S, x , y ) =  0; B5: if S' =  0 and x — 0 then 5 (0 ,0 , y) =  

and B6: B(S, x, y) is piecewise concave in x  on [0, yD\  — S ) and [yD\ — S,N].

These are intuitive for an allocation function, since, respectively (Bl): by the definition, 

B  is the number of class-2 customers who were not allocated a discounted seat, which 

increases when demand multiplier increases, and decreases when more class-2 customers 

purchase the product either initially (S increases) or on sale (x increases); (B2): when 

additional A discounted units are allocated between class-1 and class-2 customers, the 

number of class-2 customers remaining can decrease by at most A (i.e., when all A units 

are allocated to a class-2 customers); (B3): increasing S' by A decreases the number of 

waiting class-2 customers, but the number of class-1 customers waiting does not change, 

therefore fewer than A discounted units are allocated to class-2 customers, and so the 

number of customers remaining decreases by no more than A; (B4): if all waiting class-2 

customers purchase discounted products, then no customers remain; and (B5): if no units 

are purchased at the regular price or at a discount, then all class-2 customers remain. 

Condition (B6) is technical.
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We assume Y  is stochastically increasing and concave in S  and in 9 and that Y  is 

stochastically supermodular in (6, S ). Recall that these reflect the intuitive observations of 

consumer behavior as per the discussion in Section 1.3.

Let yL = (S + x)/Di,  and let yH be the largest solution to B(S,x ,yn)  — N  — S — x. 

If V < Vli then x > yDi — S  and so by the assumption (B4) B = 0; i.e., overbooking 

cannot happen. If y > yn- then from assumption (B2), the demand from the waiting 

class-2 customers exceeds the inventory remaining after all x discounted units are sold, and 

overbooking occurs. Note y i  < yn-

Lem m a 1.3 r (9 ,S ,x ) is increasing in S  and concave in 9.

Proof. By the definition of y i  and y # :

Therefore by assumptions (Bl) and (B3), g(S, x, y) is nondecreasing in y and S  respectively.

Recall that r(9, S, x) =  g(S, x, y)dFy^g s^(y) where g(S, x, Y ) =  P2 S+P1 minfx, Y D \

S\ + p2B (S , x, Y) -  pc (B(S, x ,Y)  -  (N -  S  -  x )) + .

p2S + pi(yD1 -  S), 

g(S,x,y) = < p2S  +  pix  +  p2B(S,x ,y)

if y < Pl ]

if Pl < y < Ph \

p2S  +  pxx  +  (p2 -  pc)B(S, x,y)  +  (N -  S  -  x)pc, if yH < V-

Let /y(y; S ) be the density of Y  and let S  be an arbitrary fixed value of S. 

Then r(9, S, x) is increasing in S  because

9 ( S , x , y ) d F y ( y ,  S)^ \s=s = J  ^ 9 ( S ,  x, y)fy(y; S ) ) \ s =s d y  

= J  ( ^ s 9 ( S , x , y ) ^  \s= s fY (y^)dy  + J g ( S , x , y )  Is=sdV

> 0
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The first inequality holds since g(S, x, y) is nondecreasing in S  and the second holds by

Similarly, r (9 ,S ,x )  is concave in 9 by Theorem 1.1 because g(S ,x ,y)  is nondecreasing

Lem m a 1.4 r(9,S,x) is concave in x if  ^  >  —pi/p 2 -

Proof. Let x  be the solution to B(S, x ,y)  = N  — S  — x. Since B  is decreasing in x  and 

d B / d x  > —1 it follows that if 0 <  x < x  then B(S, x ,y)  < N  — S  — x, and conversely if 

x  < x  < N  — S  then B(S, x ,y)  > N  — S  — x. Since B(S, x, y) is nonnegative, x < N  — S.

Consider two cases:

Case 1: if yD\ > N  then x < N  — S  < yD x — S. So from (1.1) we obtain

which is concave because it consists of two concave segments (since B  is concave in 

x  on [0,yDx — S'] by the assumption (B6) and p% > pc), and =  Pi +  P2 ^  >

(Pi - Pc) +  (P2 - P c ) | f  =  fo\x>x (since dB(S, x, y ) /dx  > - 1  by the assumption (B2) 

and pc >  0).

Case 2: if y D x < N  then no overbooking can occur (i.e. B ( S , x , y ) < N  — S  — x), and so

which consists of a concave segment (for x < yD x — S ) and a flat segment (for 

y D x -  S  < x  < N  — S). If d B / d x  > —pi /p 2 then g (S ,x ,y ) is also increasing on 

x < y D x — S,  and so g(S , x , y) is concave on 0 <  x < N  — S.

Theorem 1.1 since g ( S ,x , y ) is increasing in y while Y  is stochastically increasing in S.

in y and y is stochastically concave in 9.

I p2S  + p ix  + p2B(S ,x ,y ) ,  if 0 < x < yD x -  5; 
g(S, x, y) = ^

p2S  + px{yDi -  S), if yD x -  S  < x < N  -  S.
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C o m bin ing  these two cases, g(S, x, y) is concave in x, and since concavity is maintained 

under expectation over exogenous variable (recall distribution of Y  is independent of x), 

r(9, S, x ) is also concave in x. ■

We note that concavity of r(9, S, x) in x  could hold under a milder condition than 

that of Lemma 1.4, which implies that g(S,x,y)  is concave in x. Specifically, g does 

not have to be everywhere concave. It can be shown that g is not concave for y G Y, 

where Y  =  \y\yD\ < N,  ^  <  —pi/p2] • Thus, if the distribution of Y  places small enough 

probability on such subset, Y , then the expected revenue function, r, is still concave. We 

do not discuss this point any further.

Comparing ^  to the ratio of prices is important since if > —P1 /P2 then (not taking 

overbooking into account) the firm gets higher revenue from putting more units on sale; 

however, this revenue is offset by paying overbooking penalties. As a result of this trade-off 

the optimal number of units on sale in the single period can be determined by solving the 

first-order condition dr(9,S ,x) /dx = 0, and is given by the following corollary:

Corollary 1.1 The single-period optimal number of units on last-minute sale, x*, satisfies

f-i 7-. /S  + x* \ \  f W dB(S,x ,y)  . .
P i  ^ 1  — F y \(6,s )(  ) ) +  T2 y s+x, o f  U =i*^-fV |(0,s)(2/) ( l-^ )

Di

=  P c  f  1 — FY\(9,S)(yn(x*)) +  [  “ g -  "U = Z *d iry|(0jS)(2 /) 'j .
V d y H (x*) O X  /

Proof. Substituting from (1.1) and (1.2) we obtain
J „s+x

(p2S + Pi(yD1 -  S)) dFyl{e s)(y)
y
ryH(x)

+ /  (P2 S  + p1x + p2B ( S , x , y ) ) d F y l{es](y)

+  f  ((p2 - P c ) S + ( p i - p c )x + (p2 - p c ) B ( S , x , y ) + p c N )d F ym s) (y) 
JyH{x)

where the limits of the integration follows from the definitions of yL and yn.
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Differentiating r(9, S , x) in x  we obtain

( 1 .6 )

(1.7)

( 1.8)

(1.9)

+  L  ( )  0 Pl  ~ P c ^ +  ^ ~ P c ^~ B ^Sd x '  d p y\(o,s)(y)
( 1.10)

-  ^(P2 S  +  Pix +  p2B(S, X,  yH) (1 .11)

+Pc(B(S, x, yH) - ( N  - S  -  x ) )^ d F y l{es)(yH)

Observe the terms in (1.6) and (1.9) are identical. The terms in (1.8) and (1.11) are

also identical, since by the definition of yn, B ( S , x , y n ( x )) =  N  — S  — x. Therefore the 

derivative simplifies to

By setting d r /d x  = 0, and rearranging the terms we arrive to the equation in (1.5) ■

of the newsvendor model. The firm selects the number of units to place on last-minute sale 

such tha t to balance the revenues from selling an extra unit at price p\ plus the revenues 

from selling at price p2 to the remaining B  class-2 customers, with the losses from paying 

the overbooking penalty to the overflow customers. Therefore x* satisfies the following 

logic, which is reflected in (1.5):

“piProb(,S x* + l si unit is sold at p{) +  p2P rot»(B(5, x* + 1, y)st unit is sold at p2)=

d f f W if e )  (113)

( 1 . 12 )

The provided first-order condition has an appealing intuitive interpretation in the light
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PcProb(5 +  x* +  1st unit is overbooked).”

Next we discuss the supermodularity of r(6, S, x). Supermodularity of the expectation of 

a function can be established by Theorem 1.1 given that the function itself is supermodular 

(see Section 3.10.1 in Topkis (1998)). Therefore since Y  is stochastically supermodular 

in (0,S),  if g ( S ,x , y ) is supermodular in (S , x , y ) then r (9 ,S ,x ) is also supermodular in 

(6, S, x). Supermodularity of g(S, x, y) is studied in the following lemma:

L em m a 1.5 g ( S , x , y ) is supermodular in (S , x , y ) i f  either (i) pc > 0, yD\  > N,  | |  = — 1 

and If =  - 1 >' fa) Pc > 0, yDi < N,  H  =  - p i / p 2 and |f  > - p i / p 2; (in) Pc =  0 , 

yD\ > N  and are unrestricted; or (iv) pc  =  0; yD\ < N  and ^  = —pi /p2 and

| f  >  ~Pi/p2.

Proof. Let pc > 0 and consider two cases:

Case 1: if yD\  > N  then x < N  — S  < yDi  — S. From (1.1) we obtain

p2S +pix  + p 2B(S,x ,y) ,  if 0 < x < x;
g {S ,x ,y ) =

(P2 -  Pc)S + (pi -  pc)x +  (p2 -  pc)B +  pcN, if x < x < N  -  S.

and so
/

o - v r r  -A _Ldg(S, x , y ) _
dS

P2 +  P2§ f , if 0 <  X  <  x ;

(P2 -  Pc) + (P2~Pc)§§,  if X < X < N -  S.

Supermodularity in (5, x) and (S , y) demands that the above derivative increases in x 

and y respectively. Therefore it implies d B / d S  <  — 1. However, since d B / d S  >  — 1 

by the assumption (B3), it follows that necessarily d B / d S  =  — 1. By the same logic, 

supermodularity in (x,y)  requires dg/dx  to increase in y, leading to d B / d x  < —1, 

which under the assumption (B2) results in d B / d x  =  — 1.
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Case 2: if yD\ < N  then

g(S ,x ,y )  = <
p2S  + pix  + p2B(S ,x ,y ) ,  i f  0 < x < yDi -  S] 

p2S  + pi(yDi -  S),  if yDx -  S < x < N - S .

and so

dg(S,x,  y) 
dS

P2 + P2 dB[Qs'y\  i f f )  < X  < y D i -  S]

p2 — pi, if yDi — S  < x < N  — S.

Observe that d g /dS  increases in y if d B / d S  > —pi /p2, while dg /dS  increases in x 

if d B / d S  < ~Pi /p 2 - Therefore in this case necessarily d B / d S  = —pi /p2. Same as 

above, supermodularity in (x, y) requires dg/dx  to increase in y, leading to d B / d x  > 

~Pl/P2-

Finally, if pc  =  0 then in Case 1, g(S ,x ,y )  — p2S  + p\x  + p2B (S ,x ,y ) ,  which is 

supermodular following assumption (Bl), and therefore the conditions on B  resemble those 

of Case 2. ■

A direct corollary to the above Lemma is that to achieve supermodularity the model 

must be restricted to the cases of only “high” demand (yD\  > N)  or only “low” demand 

('yD\ < N).  If pc > 0, and demand is high, then B  = f (y )  — S  — x  for some function 

/(•); i.e., the firm allocates the inventory on sale first to class-2 customers. If demand is 

low, then, for any pc,  the above conditions imply that the inventory is allocated to both 

classes, such that the proportion of class-2 customers is at least p\ /p2. Finally, if pc  =  0 

and demand is high, then there are no additional restrictions on allocation.

Joint concavity can be established by the following lemma:

Lem m a 1.6 I f  g(S, x ,y )  is linear in (x,y), then r (d ,S ,x ) is jointly concave in (9,x).

Proof. Since r  is concave in 0 and concave in x  by Lemmas 1.3 and 1.4 respectively, 

joint concavity of r(9, S, x) in (9, x) requires the determinant of the Hessian (H) to be
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non-negative; where
_  d2r d2r 2

(1.14)

If g ( S ,x , y ) is linear in (x,y), then is not a function of y. So, from (1.2),

J  ddFy\9/dO = 0 since /  dFy^ =  1 for all 6. W ith this from (1.14) H  =  > 0  ■

Note that since r  is supermodular, x* is nondecreasing in 6 (see Section 2.8 in Topkis 

1998). So r should be concave only when x  and 8 are changing in the same direction. 

Recognizing this, however, we were unable to derive easy interpretable conditions on the 

parameters of the model, which would ensure joint concavity in the above sense.

Summarizing, we have the following theorem:

Theorem  1.3 I f  an allocation function B (S ,x ,y ) ,  and the other parameters of the model 

satisfy conditions (B l)  - (B6), and those of Lemmas l . f  - 1.6, then the expected single

period revenue r (6 ,S ,x) satisfies assumptions (Al)-(A3) and Theorem 1.2 holds. That is 

the revenue-to-go function Jt(8t , St,xt) is concave in x t for all t.

As an example of an allocation function that satisfies these assumptions, for the case 

with pc = 0 and yD x >  N,  consider B ( S ,x , y )  = yD2 — S  — x j ^ .  Here, the number 

of remaining class-2 customers reflects the total number of class-2 customers that wait, 

yD2 — S,  net the number of class-2 customers that purchased product on last-minute sale. 

Further, the discounted units are allocated on proportion, which is constant and depends on 

the nominal demands, D2/ D x. We note that letting the proportion depend on the realized 

demands, rather then nominal, would result in a more accurate representation of the actual 

allocation on proportion. However, it would complicate the model beyond tractability in the 

general setting. We use such realized proportions later in the simplified models of Section

1.5. W ith this, g(S, x, y) =  yp2D 2 +  x  — P257J , which is supermodular in (S, x, y), and 

linear in (x,y).  Therefore the conditions of Theorem 3 hold and the expected revenue-to-go
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function is concave for every period, and so the optimal number of units on sale is easy to 

find.

Summarizing our results for the case with a self-regulating learning function, we showed 

that the revenue function is concave and therefore the firm places some units on sale in 

every period. Furthermore, since the revenue function is supermodular, the number of 

units it places on sale increases in the waiting parameter. But, the self-regulating learning 

behavior controls the number of customers waiting in the subsequent period so that it does 

not continue to increase; that is, the firm takes a passive role, placing some units on sale, 

and relies on the consumer behavior to control future waiting. This is not be the case of 

smoothing learning function, where the firm must actively manage consumer waiting as we 

discuss below.

1.5 Optimal Policy for Sm oothing Learning Function

In this section we assume that the learning function ht (6t, x t) is smoothing; that is, the next 

period’s waiting parameter, 6t+i, increases in both the current waiting parameter, 6t, and 

the number of units on last-minute sale in period t, x t . We show that in the general model 

the revenue-to-go function is not necessarily concave, unless the speed of consumer learning 

is “slow” as defined below. To address the problems with arbitrary speed of learning we 

present two simplified models and show that for either simplification, the optimal policy 

has a “bang-bang” structure where the firm alternately places a number, x t , or zero units 

on sale. We describe this optimal policy in the closed form.

In the general model recall that supermodularity of the revenue-to-go function is re

quired by Theorem 1.2 to establish concavity. Since the learning function is linear, concavity
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and supermodularity of the revenue-to-go require, respectively,

(1.15)

d24> d h d h ^  
dh2 dx d9 ~ (1.16)

In the case of a self-regulating learning function, both inequalities hold if | p  <  0, 

since by definition a self-regulating learning function satisfies <  0. In the case of a 

smoothing learning function, however, | ^ | |  >  0 , and so concavity and supermodularity of 

the revenue function place contradictory requirements on Therefore we conclude that

the revenue function is not necessarily concave.

Observe tha t dh /d x  reflects the speed at which customers learn about the firm’s deci

sions. Specifically, we say that customer learning is slow if dh /dx  is small; otherwise we 

say it is fast. From (1.15) if dh /dx  is small enough then J  would be concave, regardless 

of given tha t r is concave. Similarly, J  would be supermodular, provided that r is 

supermodular; that is, if customer learning is slow enough, then concavity and supermodu

larity of the expected revenue function for every period are equivalent to the corresponding 

single-period property, and so can be established as per Section 1.4.2.

Slow learning has been documented in the works on reference price learning with respect 

to the sales promotions. Greenleaf (1995) and Hardie et al. (1993) studied point-of-sales 

data for such commodities as peanut butter and refrigerated orange juice, and reported an 

analog of our dh /d x  to be at 0.075 and 0.17 respectively. However, we know of no research 

regarding the speed of learning for the last-minute specials in services. This is of interest 

for future research.
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1.5.1 Sim plified M odels

In this section we simplify the general model so that upon observing the signal, the firm 

can infer the exact number of customers waiting for period t. The future demand and 

purchasing behavior remain random. This simplification allows us to solve the problem in 

the closed form, at the same time utilizing a more realistic allocation function and relaxing 

the linearity assumption of the learning function.

Let a.t E [a, a] C [0,1] be a fraction of the regular price demand that waits for the 

last-minute sale in period t. We refer to a t as the waiting fraction. Then M t =  a tYtD 2 and 

St = (1 — a t)YtD 2 , where Yt is the (unconditional) demand multiplier.

In this section we consider two simplifications:

(i) D eterm inistic waiting fraction m odel. In this model we assume that demand mul

tiplier, Yt , is stochastic, but its distribution does not depend on the waiting parameter; 

waiting fraction is deterministic with a t = dt, and it evolves according to a smoothing 

concave learning function a t+1 =  ht (at , x t);

(ii) D eterm in istic dem and m odel. In this model we assume that Yt =  const for all t =

1, 2, ...T and w.l.o.g. we set Yt =  1; the random waiting fraction, a t, is stochastically 

increasing and concave in the waiting parameter Qt , which evolves according to a 

smoothing concave learning function 9t+1 =  ht(9t,xt).

Let A t(at, Yt) be the actual demand for the discounted seats. There are Mt class-2 and 

all Ytdx class-1 customers waiting (recall they wait since P2 > Pi). Therefore At(at,Yt) = 

Yt(d1 + a tD2) = YtDi  — St . Since the firm puts x t units on last-minute sale, min[.xt, A t] units 

are sold at the discounted price pi. Assuming that the discounted inventory is allocated 

proportionally between class-1 and class-2 customers based on their realized demands, the 

number of class-2 customers that purchase discounted packages is min[xt , A t\at^ 2 and the
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corresponding allocation function is

B t(at ,Yt , x t) = a tYtD2 ( l  -  . (1 .1 7 )

The above allocation expresses proportional allocation based on realized demands.

W ith these from (1.1) the net single-period revenue is

gt (at ,Y , , x t) = pp% +  V1 ti>ii)[r,: ( l  -  mlnl^‘’ '4‘b

-  PC (o ,Y ,D2 ( l  -  “ 5 ^ )  _  (jv -  S, -  x , ) ) + (1.18)

Observe that for either model by knowing 8t and observing St the firm can determine the 

exact (realized) values for a t and yt, and therefore at the last minute there is no uncertainty 

for the current period. If A t +  St = yt.D\ < N,  then the firm has excess capacity and no 

overbooking can occur. Otherwise the capacity is scarce, and overbooking can occur if 

too many units are put on sale. Since the firm knows which case realizes with certainty, 

it forces an intuitive restriction pc  >  p\. Otherwise overbooking would imply intentional 

selling discounted products and later bumping class-1 customers (as overflow) for a premium 

of pi -  pc > 0.

1.5.2 S ingle-Period Solution for th e Simplified M odels

Recall that A(a, y) = y{d\ +  a D 2) and let x(a,  y) be the maximum number of discounted 

units such that: (i) all class-2 customers are allocated a product without overbooking; 

and (ii) all x ( a , y) units are sold. In the case of excess capacity the firm cannot sell 

all available inventory, and so x(a ,y ) = A(a,y) .  Otherwise discounting too many units 

could result in overbooking. Therefore solving ayD 2 ^1 — y ĵ  — (N  — S  — x) = 0 leads 

x  =  A ( a , y ) A{aSy)-ayD2 v) an(  ̂ solution is unique since the equation is linear in
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x. Observe x < N  — S. In summary

A{a, y ), if A < N  — S  (excess capacity case);
x(a ,y )  = < (1 .19)

A ( a > y ) ~X { a Sy ) - a y D 2 » if A > N  -  S  (scarce capacity case).

The single-period optimal policy for the simplified models is given by the following 

theorem:

Theorem  1.4 In either simplified model there exists a threshold waiting fraction a*, such 

that if  a  > a* then x* =  0. Otherwise in the case of scarce capacity x* =  x(a ,y),  and in 

the case of excess capacity any x  G [x(at, y ) , N  — S] is optimal.

Proof. In the case of excess capacity if x > x  =  A  , then g(a ,y ,x)  =  p2( 1 — a)yD2 +  

Pil/(di +  otDf) which is independent of x.

In the case of scarce capacity by definition A > N  — S  > x. If x > x, then g(a, y, x) =  

p2S + p 1x + (p2- p c )ayD2 (l -  ^ ) +pc ( N - S - x ) ,  and so =  (p i~Pc)-(P 2 - P c ) ^ z < 0 

as p2 > pc > P\- Therefore, x* G [0,x(a, y)\. On this interval g ( a ,y , x ) =  p2S  + p\x  +  

p2ayD 2 ^1 — y^^+aD^ ) which is linear in x, and so the optimal solution in on the boundary 

of the interval; that is x* G {0; x(a,  y)} =  n t .

We next show the existence and uniqueness of the threshold waiting fraction. Let 

C (a ) = ^  and observe C(a) = p x Differentiating it we obtain =  -  {̂ +aD2p -

0. Therefore a* solves C(a*) =  0. Since 0(0) =  pi > 0 and C  is monotonically decreasing, 

a* is unique.

Finally, for a > a*, C (a ) <  0; that is g(a ,x ,y )  is nonincreasing in x  and so x* =  0. 

Otherwise the maximal revenue is attained at x* = x(a,y).  In the case of excess capacity, 

however, the revenue function is flat on [x(a ,y) ,N  — S'], and so in this case any x  G 

[x(a, y ) , N  — S] is optimal if a  < a*. ■

We note that a* < 1 if D\pi  <  D2p2; that is, if the revenue from the regular-price
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segment is larger then from the low-price one, then the single-period optimal policy is 

“bang-bang”: the optimal number of discounted units drops down to zero if too many 

customers wait (i.e., when a > a*); it jumps up to x  otherwise.

Next we prove that a similar “bang-bang” policy holds for every period.

1.5.3 M ultip le-P eriod  Solution for Simplified M odels

Let R t(9t, a t ,y t , x t) be the expected revenue-to-go, given that for period t, the waiting 

parameter is 9t, the realized waiting fraction is at, the observed demand multiplier is yt 

and x t units are put on last-minute sale. The optimal number of discounted units, x*, can 

be found for each period, t =  1, 2 by solving the following dynamic program:

R t { Q t , a t , y t , X t )  =  9 t ( a t ,  y t i  X t )  +  3 E ( a t + i ,y t+ i ) \8 t+i=ht (0t , xt )  [-^ t+ i (# t+ i)  a t + i ,  V t + i ) \  (1-20) 

where the optimal revenue-to-go is given by

Kt(0t,<xt,yt) = max Rt (dt, a t ,yt , x t) (1.21)
0< x t< N  ~ ( l —at)ytD 2

and

1. gt(at ,y t , x t) is given by (1.18)

2. R?p+l{QT+i,aT+i,yT+i) =  0 for all (#x+i, ®t +i , Vt+i )

3. 0t+1 =  ht (9t , x t), is increasing and concave in either argument (smoothing)

As in Section 1.4.1, observe that $t+i = ht {6t , x t) does not depend on the realized values 

of a t and yt. Therefore we can substitute R t(0t, a t , yt , x t) =  gt (at , yt , x t) +  54>t+i{ht{6t, x t)).

In our two simplified models 0t+1 takes the following specific forms:
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•  In the deterministic waiting fraction (DW) model, ott =  6t for all t by the assumption 

and the distribution of Yt is independent of a t . Therefore

<t>™{ht{au x t)) = E yt+1 [R*t+1(ht (at , x t), yt+i)] (1.22)

•  In the deterministic demand (DD) model, Yt =  1 for all t by the assumption, and so 

w.l.o.g. y can be dropped from the expectation of the future revenue, leading to

= E^0t+ljCet+1̂ gt+1=flt(et,xt) [-^t+i($i+i>a t+i)] (1.23)

Let n t =  {x t : Rt(9t , a t ,yt , x t) = R*t {9t, a t ,yt) and 0 < x t < N  -  (1 -  at)yyD2} be 

the set of “potentially optimal” solutions for period t. Our main result for the simplified

models is tha t IIt =  {0; x t} for all t =  1,2, ...T. The concept of our proof is the following.

Suppose that the expected future revenue, ft+i, is decreasing and convex in x t and a t. Since 

gt{oLt , x t , yt) is piecewise linear in x, R t consists of two adjacent and convex segments. Since 

g is also decreasing for x t > x t , Rt is also decreasing if x t > x t . Therefore x* G {0; x t} =  IIt . 

We summarize this result in the theorem below.

Theorem  1.5 In either simplified model, x* G 11* =  {0; x t} for all periods t = 1,2, ...T.

Proof. Recall that we consider two simplified models: the one with a deterministic waiting 

fraction, given by (1.22), and the one with deterministic demand, given by (1.23). We first 

prove the theorem for the deterministic waiting case, and then extend it to deterministic 

demand case. We require the following three lemmas.

L em m a 1.7 g(a, y, x) is decreasing convex in a  for x  G n t .

Proof. If x  =  0 then g(a, y , 0) =  P2^ (l — ot)D2 + p 2otyD2 =  p2yD2, which is not a function 

of a, and therefore is decreasing convex in a weak sense.
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If x = x  then in the excess capacity case g{a, y, x(a, y)) = P2{1 — <Y)yD2 + p\{d\ +  aD 2) 

which is linear decreasing in a  since =  —yD2(p2 — p\) < 0 because p2 >P\-  In the scarce 

capacity case observe that -§ =  .NT SftayD2n =  N~s ~ayD2 which is linear in a. Thereforer  j  a  y d \+ a y U 2 —OLyD2 yd\  ’

g(a ,y ,x (a ,y ) )  = p2y(l  -  a )D2+ p\x  +  (p2 -  pc) " ~ S~d°vD2 +Pc{N -  S  - x ) ,  which is linear 

decreasing in a  since =  — Di (p̂ xP1)(N~yDL <  q  as y]j2 <  y/ )2 <  jg and p2 >  j9l by the 

assumption, and =  0 . ■

Lem m a 1.8 I f  f ( x )  is decreasing convex and g(x) is increasing concave, then f(g(x))  is 

decreasing convex.

P ro o f, follows by the chain rule.

Convex: (§ f) 2 +  f^f~§ >  0, because /  is decreasing convex and g is concave.

Decreasing: §£ =  §“ §f < 0, because /  is decreasing, and g is increasing. ■

Lem m a 1.9 Let f ( x , y) be decreasing and(or) convex in x  for all y E Y , then

(a) f ( x iV) ts decreasing and(or) convex in x;

(b) supyeY f ( x , y )  is decreasing and(or) convex in x;

P ro o f, follows from Theorems 5.2 and 5.5 in Rockafellar (1970). ■

(i) Deterministic waiting model. For period T  the claim is implied by Theorem 1.4. For 

xT E ID , by Lemma 1.7, the single-period revenue, !Jt , x T), is decreasing and convex

in a T. Therefore since R*r (dT, a T, yr) =  maxrrGnT Ur, xt ), R f i  is als0 decreasing

and convex in a Y by part (b) of Lemma 1.9.

In the deterministic waiting model aY =  Qt  =  and so by the above

Rf. is also decreasing and convex in hT~i(-). Therefore its expectation over yT, as per 

(1.22), is decreasing and convex in hr  i (•) by part (a) of Lemma 1.9.
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Let 1 <  t < T  and suppose that for every n G [t +  1 ,T], c/)n(hn- i s  

decreasing convex in hn-i .  Then by Lemma 1.8, in period t + 1, 4>t+i is decreasing and 

convex in 6t and x t.

Recall that gt(at ,y t ,x t) is piecewise linear in x t on [0, N  — 5)] with the breakpoint at 

x t = x t , and further recall that gt(at ,y t , x t) is decreasing in x t on x t G (xt , N  — *S*]. Since 

<pt-i-i is decreasing and convex in x t, Rt(dt ,aty t ,x t) consists of two adjacent segments both 

convex in Xt, and Rt(dt, a ty t ,x t) decreases in x t on x t G (x t, N  — S'*]. Thus x% G [0,xt]. 

Finally, since the revenue-to-go function is convex on this interval, x* G { 0 ;x j  =  IIt .

Therefore it is sufficient to prove that the induction assumption holds for period t; that 

is that cj)t is decreasing and convex in ht_x-

For x t G 11*, the single-period revenue, gt (at ,y t ,x t), is decreasing and convex in at by 

Lemma 1.7. The future revenue, (f)t+1, is also decreasing and convex in a t by the induc

tion assumption, upon noting that in the deterministic waiting model a t =  Qf Therefore 

R t (9t, a t , yt, x t) is decreasing and convex in a t. And so by part (b) of Lemma 1.9, R*t is also 

decreasing and convex in a t. Finally, since in deterministic waiting model yt is independent 

of a t , by part (a) of Lemma 1.9 <fit =  Eyt [i?*] is decreasing and convex in a t, and therefore 

in ht—i (since a t = 0t = ht- x).

(ii) Deterministic demand model. For period T  the claim is implied by the single-period 

result, given in Theorem 1.4.

In the deterministic demand model, observe that R^(6t , ar ,  1) =  maxlT£nT gipcr, 1, x T) 

is independent of 0T- Thus, from (1.23), 4>̂ D = Eai,\hT l [R^(aT)]- which is decreasing and 

convex in hr  _ i by Theorem 1.1, since by the above R*r is decreasing in a T, and a T is 

stochastically increasing and concave in 6t  by our assumption. Therefore by Lemma 1.8, 

4>t  is decreasing and convex in 0T~i and x T i, since hT_ i (9t -\ ,  x t  i) is increasing and 

concave.
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Let 1 <  t < T  and suppose that for every n E [t +  1,1"], 0n(/in_i(0n_i,x„_i)) is 

decreasing convex in hn i. Then by Lemma 1.8, in period t +  1, <j>t + 1 is decreasing and 

convex in 9t and x t. W ith this x*t £ {0; x t] = fff by the same argument as in the proof of 

Theorem 1.5, and it remains to prove that 4>t is decreasing and convex in ht-\.

Since a t is stochastically increasing and concave in 0t = ht i (■), the vector (9t,at) is 

stochastically increasing and concave in ht-i.

For x t € lb , single-period revenue gt(atl. x t), is decreasing in a t by Lemma 1.7 and 

independent of 9t. Future revenue, (pt.} \, is independent of a t, and is decreasing in ht by 

the induction assumption, and therefore by Lemma 1.8 <j>t+1 is also decreasing in 9t. Thus 

Rt(9t, a tl yt , x t) is decreasing in (9t , a t). And by part (b) of Lemma 1.9, R% is also decreasing 

in (9t , ott). From (1.23) <pt = E(gta t ‘j[/?*] is decreasing and convex in ht_ i(-) by Theorem 1.1 

because (9t , a t) is stochastically increasing and concave in ht-\ .  ■

To summarize, for the case with a smoothing learning function for both simplified 

models, the optimal policy is “bang-bang”; it places either 0 or x t units on last-minute 

sale depending on the realized waiting fraction, a t. Furthermore, since the future revenue, 

0 t i i is decreasing in x t . and if a t > a*, then gt is also decreasing in x t, it follows that 

if a t > a*, then .x) =  0 for all t. That is the firm offers units on sale and increases the 

number of customers waiting, and then periodically holds no sale, withdrawing revenue from 

waiting class-2 customers and decreasing future waiting. By following such policy the firm 

simultaneously achieves high utilization of its capacity, and at the same time controls the 

number of customers waiting. This policy is quite different from that of the self-regulating 

case, because the firm actively manages the waiting, as opposed to relying on the consumers 

to control the waiting themselves.

Observe that since x t < N  — S t overbooking is not optimal. This is because the marginal 

revenue P2 per unit could as well be obtained from the initial sales, and since the future
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revenue is decreasing in x t , the firm puts fewer units on sale and reduces the future waiting. 

This is not the case if the firm can obtain a marginal revenue in excess of p2, as happens 

in the three price model that we study next.

1.6 Three Price M odel w ith D eterm inistic W aiting

In this section we study the case where a firm may choose to offer some units for sale at 

P i ,  while raising the price to a higher value for the remaining inventory. By doing so the 

firm can both capture the low-price demand, as well as the demand willing to pay extra for 

being accommodated at the last minute. The three-price model reflects frequently observed 

situations where the walk-up price is higher than the regular, while some units have been 

sold at a discount earlier (e.g., airlines, car rentals or hotels).

Let P3 >  P2 be the “high” price, and let D:i be the number of customers who are willing 

to pay pz (the nominal demand). Then the actual demand at pricep3 in period t is YtD:i. As 

before, at the last minute the firm decides x t, the number of units to offer at the discounted 

price pi. The remaining units are offered at price pz.

To determine the revenue of the firm, recall that St =  (1 — a t)YtD2 units are sold 

at the initial price p2- and min [xt-,At] units are sold at the discounted price p \ , where 

A t = Yt (di + ottD 2).

Observe that only class-3 customers purchase at price pz- Let Pt(a t) E [0,1] be the 

fraction of class-3 customers who wait for a deal, given that there is a fraction a t E [a; a] of 

class-2 and -3 customers waiting combined. That is the total number of class-3 customers 

waiting is ip^a^YtDz , and the number of class-2 customers is aYtD2 — ipt{at)YtDz- Since 

the latter is non-negative, it is implied that 'ipt(at)YtDz < aYtD2 for all a t E [a; a].

As before, we assume that the discounted units are allocated on proportion. That is, the
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number of discounted units that are sold to class-3 customers is min[xt, A t] ti iat̂ tD3 and the 

net single-period revenue is gt(at, Yt, x t) = P2 St+p, min[x(, A t]+ps^t(at)YtD 3 ( l  -  j

PC (l -  = ^ )  -  (JV -  S, -  x,))+.

In this section we assume that the demand multiplier, Yt , is stochastic, and the waiting 

fraction, a t, is deterministic^. We assume that the distribution of Yt does not depend on 

at, and that in turn, a t evolves according to a linear learning function a t+1 =  ht(at,xt). 

Note tha t we place no restriction whether h(-) is smoothing or self-regulating.

We consider two cases: one where overbooking is allowed and one where it is not. For 

each of these we define a representative waiting function, ip.

If there is no overbooking, then since class-3 customers have a higher valuation for the 

product, they are more cautious to wait. Therefore we assume ip is “small,” compared with 

a, and class-3 customers do not wait unless many class-2 customers are already waiting. 

For example, if we assume that class-3 customers do not wait, unless all class-2 customers 

are already waiting, then ip (a) = max[0 ,1 — ^  +  a ^ ]  for a  € [0, 1].

In the case with overbooking, class-3 customers do not have capacity concerns, as they 

are guaranteed a product at their reservation price, p3 (since yt.D:>, < yD3 <  yD2 < N).  

Therefore, they are more likely to wait, and we assume ip is “large”; there may be a fraction 

of class-3 customers waiting even if no class-2 customers wait. For example ip (a) =  

for a E D3) - !]■ this case the fraction of class-3 customers that always wait is

ip(a) = d i/(d i +  d2).

Technically we assume that ip is nondecreasing convex, and in the case with no over

booking ip = 0 for a < a  for some a  € [a, d2/ D 2] and ip'D3 = D2 otherwise, and in the case 

with overbooking ip'D:i < D2 and ip 'A(a,y) <  ipyD2. Intuitively, the functions that satisfy 

tAlternative models w ith stochastic demand and waiting, or deterministic Y  and stochastic a ,  could 

in general be of interest as well. However, we found that in three price context they place restrictive and 

uninterpretable conditions on prices, demands and waiting. Therefore we do not present them.
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these assumptions correspond to the “small” and “large” ip as per the discussion above. 

Then by redefining x  to include the waiting of class-3 customers as

by the same argument as in the proof of Theorem 1.4 we obtain that the single-period 

optimal policy resembles that of the two-price model.

that if  a  > a* then x* =  0. Otherwise in the case of scarce capacity x* =  x(a ,y),  and in 

the case of excess capacity any x  G [x(a, y ) , N  — S] is optimal.

P ro o f. Follows by the same argument as in the deterministic waiting case in the proof of 

Theorem 1.5. As in Lemma 1.7 we prove that gt(at ,y t ,x t) is convex in a t for x t G ITf.

If x  =  0 then g(a, y, 0) =  p2S  +  p3yip(a)D3 , which is convex since ip is convex.

If x  =  x  then in the excess capacity case g(a , y, A(a, y)) — £>2(1 — oc)yD2+pi(di  +  aD 2) 

which is linear in a. In the scarce capacity case, if overbooking is not allowed then g is 

piecewise linear convex. By our assumption, if a  < a  then u f  a) =  0 and so =  —yD2(p2 —

r> A  Tf n  "s. ru tVipn ■?// =  D n  /  D o  a n d  ^ 2  —  — i i D n t r —  n .fi'.ln i nW  4 -  n  D n i i .  (1  —  F!(rv nW

is convex because ^ \ a>& ~  f;U <d =  yD2(p3 - p i ) ( l  -  E ( a , y )) >  0. If overbooking is 

allowed, then

because the numerator in the first term in (1.25) is positive since in the scarce capacity 

case yD\  > N,  and p3 > px by the definition. The denominator is positive since A(a., y) —

x(a ,y )  =
A  (a,y), if A < N  — S  (excess capacity case) 

if A > N  — S  (scarce capacity case)N —S —il>(a)yD3 
A ( a , y ) - i l ) ( a ) y D 3 ’

T h eo rem  1.6 In the three price model there exists a threshold waiting fraction a*, such

N - S - r p ( a ) y D 3 ^  -i j  8 Ewhere E(a ,y) 0. The function

d2g _  ( yD3(yDi  -  N)(p3 -  pf)
d a 2 V (A{a,y) -  yip{a)D3)z )

(A (a, y)'ip'f(A(a, y) -  yip(a)D3) +  2ypip'aD3 -  D2)(2p'aA (a , y) -  yipD2)) > 0

(1.25)
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yip(a)P3 =  ydi +  y(aD 2 — ip(a)D3) > yd\ > 0 as aD 2 > ip(a)D3 (by the definition of 

ip, since the number of waiting customers of class-2 is non-negative). In the second term, 

A{ol, y)ip"(A(a, y) —yip(a)P3) > 0 since ip is convex and by the above A (a , y) — yip(a)P3 > 

0. And 2y(ip'aP 3 — D 2 )(ip'aA ( a ,y ) — yipD2) > 0 because by the assumptions on ip both 

elements of the product are negative.

If x  = N  — S  then in the case of the excess capacity N  — S  > A  and therefore g(a, y ,N  — 

S) = P2(l ~  oP)yD2 + piy(d\ +  a D 2), which is linear in a. In the case of scarce capacity 

N  — S  > x  and therefore g(a , y ,N  — S) =  p2( 1 — a)yD 2 +  p i(N  — (1 — a)yD 2) + (p3 — 

Pc)ip{oi)yD3 (1 — (N  — (1 — a)yD 2)/A(a, y)). If overbooking is not allowed then pc  =  p3 

and g is linear. Otherwise

d2g = ( y P 3(yPi  -  N)(p3 - p c ) 
da2 \  A (a ,y )z

(A(a, y)2ip'a +  2yP2(yipP2 -  ip'aA (a ,y ))) > 0

because the first term in (1-26) is positive since in the scarce capacity case y P  1 > N , and 

p3 > pc  by the definition. And in the second term, ip is convex, and by the assumption 

yipP2 >  ip'aA (a ,y) .  Therefore g (a ,y ,x ) is convex in a  for x  <E IIt, and the result follows.

■

In this case, a* < 1 if P\P\ < P 3p3. That is, if the revenue from the high-price segment 

is higher than from the low-price one, then the single-period optimal policy is “bang-bang.”

By redefining IIt =  {0; x t\ N  — S t} the multiple-period optimal solution is given below.

Theorem  1.7 In the three-price model (either with or without overbooking), x*t G 11* =  

{0; x t \ N  — St} for all periods t = 1,2, ...T.

In summary, in the model with three prices (customer classes), the optimal solution 

is the same for both the model with and without overbooking, provided that we account 

for the changes in the behavior of class-3 customers caused by allowing (or not allowing)
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overbooking and the corresponding availability concerns. The solution does not have the 

exact same “bang-bang” structure as in the two-price model, since the future revenue is not 

everywhere decreasing. Numerically, however, we observed that there still exists a* such 

tha t if a t > a*, then x*t =  0. That is the optimal policy follows a pattern of increasing the 

fraction of customers waiting, and then periodically offering no sale, withdrawing revenue 

from waiting class-3 customers and decreasing future waiting.

The difference between the two- and the three-price models is that in the latter it could 

be optimal to overbook. This is because the firm has a possibility to obtain a high revenue, 

Pzi per unit, which cannot be obtained if the customers do not wait. Therefore the firm 

wants a number of customers to wait, and so puts more units on sale, even though it may 

result in paying overbooking penalties.

1.7 Num erical Studies

In this section we provide several examples to illustrate the value of making decisions 

optimally as compared with several heuristics managers use in real-life situations, and 

examine how this value and the optimal policy itself change in different situations. We also 

analyze numerically two extensions to our model: selecting the optimal discount price p*, 

and allowing random allocation of discounted units rather than proportional. We use the 

three price model since it allows for all types of consumer behaviors that we study in the 

current paper.

We set N  = 100, 5 =  0.95, D2 = 50, pi = 100, p2 = 300 and p3 = 500, and consider 

four families of instances: smoothing overbooking (MB), smoothing nonoverbooking (MN), 

self-regulating overbooking (RB) and self-regulating nonoverbooking (RN). For each family 

of instances we study four demand curves, with Di = 150 or Dx = 100 of class-1 customers, 

and Ds = 30 or D:i = 10 of class-3 customers. We denote these demand curves as “150-50-
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30,” “150-50-10,” “100-50-30,” and “100-50-10,” respectively. For cases with overbooking we 

study two penalties: pc = 150 and pc  =  450.

We use functions h(a, x) =  X-— +  (1 — A)a: and h(a, x) =  (1 — A) +  A|} — (1 — A)a, for 0 < 

A < 1 for the smoothing and self-regulating learning, respectively. We use ip (a) = 

and a ) =  max[0 ; 1 — ^  +  for waiting functions with and without overbooking, 

respectively.

We set y =  0.6 and y =  1.4, so that the demand multiplier Yt E [0.6,1.4], and exam

ine three distributions: truncated N orm al[1,0.2*], Beta[ 1.75,3] and Beta[0.8,2], with the 

expected values and C V s, respectively, (1, 0.913, 0.841) and (0.181, 0.191, 0.237).

For each instance we compute the expected infinite horizon discounted revenue (the 

revenue), assuming that the system starts from steady state — intuitively, this is the revenue 

that the firm will generate starting at an arbitrary time in the future. To compute the 

revenue we discretize a t as {0; 0.01; 0.02; ...1} and discretize yt as {0.6; 0.7; ...1.4} for a 

total of 909 states. We use successive approximations with error bounds to compute the 

infinite horizon expected revenue function value (Bertsekas (1987), pp. 188-193). Then we 

determine the subset of recurrent states and the steady state probabilities, and obtain the 

expected revenue as the weighted sum (Puterman 1994, pp.589-594).

In Figure 1.2 (a) we present a sample path for the optimal decision, x*, and the fraction 

of customers waiting, at, and in (b) we present the recurrent states and the frequencies with 

which they are visited in the steady state. We observe that the optimal decision and the 

fraction of customers waiting follow the cycles of variable length, see (a). This expresses the 

“bang-bang” structure of the optimal policy: if in period t the fraction of waiting customers, 

a t , gets large enough, then the firm puts x*t =  0 units on sale and so a t+1 drops. Hence 

in period t +  1 the firm puts x{at+i ,y t+i) > 0 units on sale and a t+2 gets up again; note 

1-period time lag between x  and a  in (a). Following such cycles, the optimal policy with

*We use 2a  lim its so that the endpoints have the nonnegligible probabilities.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

9 0  -

8 5

8 0  -

7 5  -

7 0
5  10  1 5  2 0  2 5  3 0  3 5  4 0

Period , t

(a) (b)

Figure 1.2: In (a): sample path of the optimal decision, x l , and the fraction of customers waiting, a t . In 

(b): frequencies of visiting different states by the optimal policy. Both examples are for the MN instance 

with 150-50-30 demand curve and Beta(0.8,2) demand multipliers; A =  0.2.

nonzero probability visits a variety of states; see (b). Because of the uncertainty in demand 

the length of cycles is random; thus the customers cannot anticipate the transitions and 

hence the decision of the firm.

1.7.1 Perform ance o f th e O ptim al P olicy and M anagerial Insights

To better understand the performance of the optimal policy we compare it with four heuris

tics tha t appeal to managers. In each heuristic we determine the number of units to put 

on sale through different methods. We consider the following:

Do-nothing: puts x t =  N  — St or x t =  0 units on sale for all t, whichever is better;

B estP : puts x t = N  — St units on sale with probability P* and x t =  0 with probability 

1 — P*, where the value of P* is the one that results in the highest revenue;

S*: selects x t =  0 if St > S* and x t =  N  — St otherwise, where the value of S* is the one 

that results in the highest revenue;

Beta*: puts x t =  N  — St with probability f3* ̂ St, and x t =  0 with probability 1 — f3* N~NSt,
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where the value of j3* is the one that results in the highest revenue.

The rationale behind a do-nothing heuristic is straightforward. We observed that there 

is no consistent “do-nothing” activity across the different instances, and therefore our do- 

nothing is the best of “all” or “nothing.” The BestP heuristic attempts to prevent consumers 

from guessing if a sale will occur in a given period. A variation of the BestP heuristic is used 

by a car rental company with whom we discussed our work: they have a deal almost every 

week, but to access it, customers need a promotion code. These codes are e-mailed to a 

subset of their registered webmail customers, where a customer is included on the mailing 

list for a given week with some probability. Heuristics S* and Beta* represent a naive 

managerial approach that holds that discounts should be offered in periods with low regular 

price sales (i.e., when St is small). The former heuristic does so when a threshold is crossed, 

whereas the latter places units on sale based on a linear probabilistic rule. We find P*, S* 

and j3* through numerical search. Given the revenues of the optimal and heuristic policies, 

we compute the relative improvement of the optimal policy over a particular heuristic as 

(optimal revenue — heuristic revenue)4-(heuristic revenue).

Figure 1.3 presents the relative improvements over the heuristics for the four families 

of instances with 150-50-30 demand curve and Beta(0.8;2) demand multipliers.

Our main observation is that in all cases the optimal policy generates five to fifteen 

percent additional revenue over the best heuristic. This value changes depending on the 

speed of learning and the type of consumer behavior. It also depends on which heuristic is 

the best.

In the instances without overbooking (Figure 1.3 (a) and (c)), the best heuristic is 

BestP, as it outperforms heuristics S* and Beta*. At a first glance this might seem slightly 

counterintuitive, since the latter are based on the intuitive managerial approach to put more 

units on sale when St is small. However, recall that the optimal policy suggest exactly the
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Figure 1.3: The relative improvements for the (a) MN , (b) MB, (c) RN and (d) RB instances with  

150-50-30 demand curve and Beta(0.8,2) demand multipliers. In (b) p c  = 150 and in (d) p c  = 450.

opposite to this naive approach. Specifically, xl  =  0 if at > a*, and since St — (1 — a^ytD?. 

it follows that (in expectation) it is “optimal” not to put units on sale in the periods with 

small St-

The improvement over the BestP heuristic depends on the speed of learning. This is 

because the optimal policy determines when to offer a discount (the timing), and if one is 

offered, then how many units to discount (the number). By choosing the best probability, 

the BestP heuristic “optimizes” the long-run average number of units on sale, but cannot 

achieve the right timing of sales. In the cases of slow learning in order to change waiting 

behavior, the firm must have consistent series of periods with and without discounts. The 

BestP heuristic cannot ensure such consistency, and therefore chooses to do nothing (indeed
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Instances where it is optimal 

to offer last-minute discounts

Instances where it is optimal 

to do nothing

MN, RN 100-50-30 MB, RB 100-50-30

MB, RB 150-50-10 MN, RN 150-50-10

MB, RB 100-50-10 MN, RN 100-50-10

MN, MB, RN, RB 150-50-30

Table 1.1: Strategic use of overbooking in order to increase value from offering last-minute 

discounts.

P* =  0 for A < 0.625 on Figure 1.3 (a) and for A < 0.575 on Figure 1.3 (c)). For faster 

speeds of learning, consistency is not required as customers readily change their waiting 

behavior, and therefore the timing of sales is less important than the average number of 

units on sale.

In the instances with overbooking (Figure 1.3 (b) and (d)), the best heuristic is S*. 

This is because the S* heuristic puts units on sale only when it is appropriate, and so has 

a direct control over the timing, as opposed to the probabilistic heuristics which do not. 

Better timing implies lower overbooking penalty, so the S* heuristic returns higher revenue. 

As the total penalty is proportional to p c , the improvement is also larger in the cases with 

large pc (compare (b) and (d) in Figure 1.3).

Next we study the factors that influence whether the strategic revenue management as 

we discuss in this paper will be effective. Table 1.1 classifies different instances into those 

where the firm benefits from offering last-minute discounts and those where it is optimal to 

do nothing. Observe that the firm can increase the value of its revenue management policy 

by strategically allowing or not to overbook. In the cases with few class-1, but many class-3 

customers (row 1 in Table 1.1), it is advantageous for the firm not to allow overbooking, 

while in the cases with few class-3 customers (rows 2 and 3 in Table 1.1), overbooking is 

preferable. Such distinction can be made, because in order to generate value from last- 

minute sale the firm must ensure that the number of discounted units sold to high-value
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class-3 customers is not disproportionately large. This can happen when there are many 

class-3, but few class-1 customers. Thus in such a case the firm must force more of class-3 

customers to buy early, which it does by not allowing overbooking. This allows the firm to 

simultaneously offer discounts to achieve high utilization and lose little revenue since few 

discounted units are sold to high-value customers, while occasionally sell inventory at p3 to 

waiting class-3 customers. In the reverse case with few high-value customers, because of 

proportional allocation, even if all class-3 customers wait, they are displaced by customers 

of class-1, and hence only few end up buying at a discount, while most buy at p3. Thus 

the firm provides an incentive for more class-3 customers to wait by allowing overbooking. 

In the remaining cases the sizes of classes are balanced and, regardless of overbooking, the 

firm can take advantage of periodic discounts to generate extra revenue.

We considered alternative distributions of demand multipliers: truncated Normal (1;0.2), 

Beta(1.75;3) and Beta(0.8;2). In our experiments, the instances with Beta(0.8;2) resulted 

in the largest improvements because this distribution has the lowest expected demand and 

the highest CV.

Figure 1.4(a) presents the relative improvements under different capacity scenarios. 

Observe that the value of offering discounts optimally increases in capacity. For N  = 70 

it is optimal not to put any units on sale, and therefore the improvement is zero. It is 

intuitive, since no discounts should be offered if the (expected) utilization of capacity is 

high enough. As capacity increases (i.e., the expected utilization decreases) the firm offers 

discounts, customers wait, and it becomes more valuable to manage this waiting optimally.

1.7.2 Selecting th e O ptim al D iscount Price, p \

Our model assumes that the discount price, pi, is fixed for the entire horizon of T  periods, 

and as we argue in the introduction, building a model where customers react to both
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Figure 1.4: The effects of capacity, N ,  and discounted price, p i ,  on the optimal revenue. In (a): relative 

improvement over the BestP  heuristic at different capacity levels for MN instance with 150-50-30 demand 

curve and truncated N orm al(l,0.2) demand multipliers. In (b): Optimal revenue as a function of discounted 

price, p i ,  in the instances with Beta(0.8,2) demand multipliers.

price and availability of discounted units is nontrivial. As research in dynamic pricing 

shows, however, a heuristic that charges an optimally selected single price (as opposed to 

optimizing it dynamically) often performs only marginally suboptimally. Therefore, as a 

heuristic policy, the firm could search for the optimal “static” discounted price, p{, charge it 

in every period, and then determine the number of discounted units to put on sale following 

our optimal policy.

We search for such optimal static price, p\, numerically over its domain, [0,p2]; see 

Figure 1.4 (b). In this example, we impose a demand curve D(p) = 200 — 0.5p (so that 

D(300) =  50 and 11(100) =  150 as in previous examples). We also assume that the value of 

a discount influences the rate at which customers are willing to change their behavior, i.e., 

the speed of learning. In particular we assume A(p) = 0.3 — O.OOlp. We experimented with 

other functions for demand and speed of learning, but observed no qualitative differences 

from the case presented.

Two observations are evident from Figure 1.4 (b). First, the optimal revenue is not 

concave and often not quasiconcave, therefore it may not be possible to advance in deter-
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mining the optimal discount analytically. There is an obvious optimal point, however. Such 

a point exists because the firm uses class-1 demand to achieve two goals. On one hand it 

wants pi to be high, since then it obtains larger revenue from the sale of each discounted 

unit. On the other hand, it wants D(pi) to be high, because under proportional allocation 

class-1 customers displace some waiting class-3 customers, such that they purchase at even 

larger price, p%. Since price negatively affects demand, these goals conflict and thus at some 

price level, further increase in price becomes disadvantageous.

Figure 1.4 (b) also provides a neat illustration to the earlier point that firms can strate

gically use overbooking to increase revenue. Observe that when the discounted price is 

small, hence, class-1 demand is high, more revenue is obtained when the firm does over

book. Conversely, when the price is large, hence, class-1 demand is small, the firm benefits 

from not overbooking. This observation further supports our findings presented in Table 

1.1 and the discussion after it.

1.7.3 R andom  A llocation  o f D iscounted  U nits

Our second extension replaces allocation on proportion with a more realistic random al

location that reflects the “first come, first served” practice of selling discounted prod

ucts. In particular, we assume that all waiting customers have equal probability of ar

rival. By construction, there are %jj{a)yD^ customers of class-3 and A — ip(a)yD:i cus

tomers of classes 1 and 2 waiting for the x  units of discounted product. Therefore, 

B  = Tp(a)yD3 — Hypergeometric(x,'ip(a)yDs, A)] here we assume that all quantities are 

integers. Further, since E[B] = yj(a)yD:i(l — rnin̂ 1'4]), our proportional allocation based on 

realized demands substitutes B  with its expected value (disregarding rounding).

The results of such random allocation are not known to the firm. Therefore in order 

to determine the optimal number of units on sale, the firm must evaluate the expected
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revenue over such random allocations both in single period and in multiple periods (note 

tha t single-period revenue is not random under proportional allocation). Hence, for each 

state we simulate 1,000§ random allocation trials and select the decision that yields the 

highest average revenue.

We compare such “optimal” decisions for random allocation derived using simulation 

with our optimal policy (derived analytically assuming proportional allocation). We ob

served average differences between the number of units put on sale by the analytical and 

simulated policies for pc  = 200,300,400 to be 2.2, 3.6 and 4.2 percent (1.6, 2.6 and 3.1 

units), respectively. That is, the simulated decision is more conservative. This is intu

itive, since, if, due to randomness, the number of class-3 customers that remain waiting 

exceeds the available capacity then the firm must pay overbooking penalties or lose poten

tial revenue from sale at p3. Our simulations confirmed this intuition: in general, random 

allocation causes fewer units to be put on saleT At the same time, the difference is min

imal, often within one unit, which could be attributed to rounding. That is, substituting 

the random variable with its expectation in our simulations does not lead to a significant 

error. This is because in the analytical optimal policy when x* > 0 then x* = x  and is 

relatively large (e.g., in Figure 1.2 (b) typically x = 75...90 units). Since B , is a sum over 

x* random trials determining whether a unit on sale is allocated to a customer of class-3 or 

not, by the central limit theorem the actual realizations of B  are scattered closely around 

its average value, assumed by the (deterministic) proportional allocation. Further, since 

x  < N  — S, decreasing the number of units on sale by typically just one or two the firm 

ensures that large overbooking penalties occur rarely. Since the overbooking cost increases

We selected 1,000 trials, because this number provides a good balance between computational efficiency 

and convergence.
'T here are several exceptions, where the firm puts more units on sale under random allocation than 

under proportional, however, we believe they are caused by the random scatter around a positive mean 

difference.
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in pc, the difference between the simulated and analytically optimal numbers of units on 

sale also increases with overbooking penalty.

Because the simulated “optimal” policy is so close to the analytical, the revenue gen

erated by following the analytical optimal policy when the discounted units are actually 

allocated randomly is also close to that when they are allocated on proportion. In our 

simulations the difference between these revenues never exceeded three percent. As such, 

for the examples we studied, simplifying the actual random allocation with proportional 

allocation results in a robust policy.

1.8 Conclusions

Our work is motivated by the concern that given the increased ability to search for better 

prices for travel related products (flights, vacation packages, etc.), consumers will learn to 

expect last-minute deals and will strategically wait for them. In this paper we consider how 

a firm should offer last-minute discounts over a series of selling periods, taking into account 

that future customer behavior is influenced by the firm’s decisions. We present a model 

that incorporates both stochastic demand and stochastic customer waiting behavior. We 

consider two alternate waiting behaviors, one in which customers interpolate between their 

previous waiting likelihood and their observation of the firm’s policy (the smoothing case), 

and a second in which they anticipate other customers’ behavior and the likelihood that 

they will receive a unit on sale (the self-regulating case). We study the problem for cases of 

two and three customer classes. The two-class problem represents the case where a list price 

is given (as in the cruise or vacation packages industries); the three-class problem reflects 

typical airline pricing where prices may decrease or increase in the days prior to departure. 

We formulate the problem as a dynamic program and develop a solution approach amenable 

to the novel structural properties we find in the problem.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

For the case of two customer classes, we show that under self-regulating customer be

havior, the revenue function is concave in the number of units placed on sale at the last 

minute when the discounted units are allocated in a reasonable manner. That is, the firm in 

general will set some units on sale in each period and allow the customer behavior to limit 

the number receiving the benefit of the reduced price inventory. In contrast, in the case 

of smoothing customer behavior, we show the firm should follow a “bang-bang” sale policy, 

either placing most of the remaining units on sale or none. Thus, the firm takes a more 

active role, adjusting the customers’ expectations by alternately increasing the number of 

customers waiting until a threshold is crossed, upon which the firm places no units on sale. 

By doing so, the firm is able to regulate the number of customers waiting and to increase 

its revenue by increasing utilization, allowing some units that would otherwise not be sold 

to be purchased by the lower-value customers.

In the model with three customer classes, we consider the effects of overbooking. If 

overbooking is not allowed (e.g. in guaranteed sales such as cruises), customers must 

balance potential price discounts with potential stockouts of inventory. If overbooking is 

allowed (e.g., for airlines where customers denied boarding are compensated), customers 

balance waiting for reduced prices with the risk of potentially higher prices. We show that a 

similar policy is optimal, provided that one appropriately accounts for the allowance or not 

of overbooking. Through numerical simulations we find that following the optimal policy 

the firm can obtain a benefit of five to fifteen percent more revenue over several reasonable 

heuristics that firms might follow. We show that allowing overbooking increases this benefit 

when there are few high-value customers and similarly show that disallowing overbooking 

increases the benefit when there are many high value customers. We also test the effects of 

relaxing modeling assumptions about fixed prices and deterministic proportional allocation 

and show that, with respect to these, the derived optimal policy is very robust.

We acknowledge that the model formulated here does not account for all factors that
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may influence strategic customer behavior in revenue management. Future studies should 

consider more explicit formulations of customer utility, competition between firms and 

gaming by both firms and customers. In addition, empirical work is needed to better 

understand consumer learning behavior with regards to travel-related discounts.
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Chapter 2

C onstructing Balanced Work Groups

2.1 Introduction

On many occasions organizations face series of diversified tasks, and the exact details of 

the future tasks are frequently unknown. In order to better address the solvability of these 

tasks, organizations often create stable heterogenous work groups, which are known to 

perform better then homogenous groups on complex projects and problem solving tasks 

(Hackman 1990, Kirchmeyer and McLellan 1990, McShane 1992).

In this two-chapter essay we study management science techniques that can be used 

to construct such groups. Initially this work was motivated by an applied project of con

structing effective MBA study groups. Therefore the essay parents both the theoretical 

and applied results.

The first part of this essay, Chapter 2, describes the applied group construction project. 

In contrast to a more common approach of trying to minimize deviations from perfectly 

designed (’balanced’) groups, we, from the start, enforce ’perfect balance’ with constraints. 

The idea was that these constraints will be relaxed when a perfectly balanced group design
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cannot be found. To our surprise, in the practical applications, these constraints did not 

have to be relaxed in four years of actual use of our group creation software - perfectly 

balanced groups were always found.

The second part of this essay, Chapter 3, is an attempt to provide an explanation to 

this counter intuitive phenomenon. After all, examples where the perfect balance cannot 

be achieved are relatively easy to construct.

2.2 M otivation: Creating M BA  Study Groups at Rot- 

man School

Ranked among the best business schools in the world, the University of Toronto’s Joseph L. 

Rotman School of Management offers a number of research and degree programs, including 

the full-time and part-time MBA, a one-year Executive MBA, and several other graduate 

and undergraduate programs. In many of these programs, students are assigned to groups 

to work on group assignments and projects. Rotman faculty and staff view these groups as 

important learning tools preparing students for future teamwork environments.

The Rotman School is hardly unique in this regard. Indeed, the goal of business edu

cation is to produce professionals who are capable of driving future economic growth; to 

do so, they must collaborate consistently and productively with other people and organi

zations. Thus, developing the effective teamwork skills is important, comparable, in some 

cases, to developing the classical skills taught at the business school, such as proficiency in 

marketing or accounting. In Rotman MBA programs, nearly 40 percent of the course work 

is group based, on average. Therefore the school must ensure that the composition of the 

student groups leads to effective group-based learning.
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2.3 Group Work and the Creation of Balanced Groups 

- the Background

Researches in organizational behavior (OB) have found that heterogeneous well-balanced 

groups, whose members possess diverse personal characteristics and backgrounds, are more 

effective than homogenous groups on complex projects and problem solving tasks (Hackman 

1990, Kirchmeyer and McLellan 1990, McShane 1992).

The management science and decision analysis literature includes a large number of 

studies of the problem of creating well-balanced student groups. Baker and Powell (2002) 

provide an excellent overview and cite studies that provide a theoretical analysis of the 

problem and describe the methods that could be used to construct student groups. How

ever, it is often not clear how these methods could be used to create practical decision 

support systems. For example, Desrosiers, Mladenovic and Villeneuve (2005) describe a 

sophisticated solution method with hardware requirements that would be infeasible in a 

typical MBA office. A notable exception is Weitz and Jelassi (1992), who developed and 

implemented a group assignment system at INSEAD that was later implemented at NYU 

in a modified version. Their system is a variation of the people sequencing heuristic of 

Beheshtian-Arkedani and Mahmood (1986).

2.4 R otm an Study Groups

The Rotman School has used study groups for years. Initially, the faculty members allowed 

students to choose their own partners for the study groups. Over the years, in an effort 

to make groups more effective, the school centralized the process, with the MBA office 

personnel assigning students to study groups upon their enrollment in the program. They 

expect students to stay in these groups for their first (compulsory) year of the MBA studies.
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Over time a number of concerns have arisen, which can be loosely classified into two 

issues: group composition and work splitting.

The first issue arises from the potential lack of balance among groups. It is generally 

desirable to create heterogeneous groups that include students of different genders, different 

cultural and different academic backgrounds. The experience at Rotman seems to conform 

(at least anecdotally) to the OB theory that the more diverse the groups are, the deeper 

perspective each student can gain from his or her peers. Students whose first language is 

not English are a special concern, because they may find courses with heavy writing require

ments difficult; they should be spread evenly among the groups. Students with degrees in 

technical disciplines (engineering, mathematics, computer science) may have an advantage 

in quantitative courses, such as statistics, while students with degrees in humanities and 

social sciences may have an advantage in other courses, such as organizational behavior. 

Ideally the groups should be balanced with respect to all such factors. In other words, 

we would like to see homogeneity (balance) between groups and heterogeneity (diversity) 

within groups.

The self-selection approach of letting the students pick their own group partners tends 

to lead to the opposite results. Students tend to form groups with people they knew as 

undergraduates, people of the same cultural background, or people similar to them in other 

ways, leading to within-group homogeneity (it was not uncommon to see an all-Chinese 

group or an all-engineers group when students were allowed to form their own groups) and 

between-group heterogeneity.

Work splitting was another major concern, gaining its importance as the weight of 

group-based assignments increased in the Rotman curriculum. Students tend to split group 

projects within the group, assigning work from different classes to the group members with 

perceived strength in that area. For example, a group faced with projects in statistics and 

organizational behavior would often split up the work, assigning the statistics project to
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the one or two students with strong statistics backgrounds, and the organizational behav

ior project to the students who were psychology majors. They would thus diminish the 

supposed benefits of group work (since individuals or very small homogeneous subgroups 

would do the projects), and risk subverting the learning process: in many cases, the stu

dents who do the assignments have the strongest prior background in that particular area 

and thus gain the least benefit by doing the additional work. This is a particular concern in 

an MBA program, where the diversity of student backgrounds can be staggering, students’ 

educational backgrounds in a particular subject area often range from an introductory 

undergraduate course to a PhD.

These issues have been further exacerbated by the rapid growth in the Rotman MBA 

program over the last few years: 275 students entered the full-time MBA program in 2003 

(the class of 2005), an increase of 21 percent over the class of 2004 and 66 percent over the 

class of 2003. Apart from being large, the recent incoming classes are also very diverse: 

the class of 2005 includes students from 25 different countries, who vary in academic and 

industrial backgrounds, languages, religious and cultural norms.

2.5 Creating M ultiple Balanced Groups

During the summer of 2002, the administration of the Rotman MBA program examined 

the way student groups were functioning and the group-formation process. In spite of the 

problems, they decided that the emphasis on group work should be retained because of 

its strong benefits; however the administration had to find creative ways to deal with the 

problems related to group composition and work splitting. In particular, they needed to 

come up with a strategy to ensure fairness, to prevent certain groups from having a priori 

advantages (either real or perceived) with respect to workload in particular classes. They 

decided that the school needed to revamp the group-creation process to ensure that all
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students are assigned to multiple, well-balanced groups.

The concept of balancing is based on the premise that all groups should contain roughly 

the same proportion of students meeting particular criteria; these criteria may include 

gender, English proficiency and educational background. Once the school selects the criteria 

the goal is to create groups that are as similar or well-balanced as possible with respect to 

all of the criteria.

W hat does a well-balanced group look like? Let us illustrate with two criteria: group 

size and gender. The class of 2005 consists of 275 students, and the administrators decided 

tha t 46 groups should be created. Hence, a perfectly balanced group with respect to group 

size should consist of 275/46=5.978 students. Because the number of students in a group 

cannot be fractional, we say that the school achieves perfect balancing with respect to 

group size if all groups have either five or six students. Similarly, the class consists of 84 

females and 191 males. Thus, perfect balancing by gender would imply that each group 

has 84/46 =  1.826 females, which we would translate into a balancing requirement that 

each group contains either one or two females. By applying similar logic to all the other 

balancing criteria, we obtain upper and lower bounds (balancing constraints) on the number 

of students meeting certain characteristics to include in each group. If it is impossible to 

meet all of the balancing constraints simultaneously (if the number of criteria gets too large, 

for example), we can widen the upper or lower bound constraints beyond the ideal levels.

To follow this procedure, we must first determine whether individual students meet 

particular criteria. For some criteria, such as gender, this determination is trivial. For other 

criteria, for example, citizenship, we must first translate the criteria into binary properties 

(Canadian or non-Canadian, for example) before we develop balancing constraints, and as 

a result, one criterion may lead to several properties and hence to several constraints (Table 

2 .1).

To address the issue of splitting work within groups, the MBA administrators decided
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to implement a multiple groups policy. Under this policy, they assigned each student to 

several study groups, with different groups employed by different courses. The intention 

was to discourage from trading assignments, with some members of the group doing an 

assignment for one class in return for other doing an assignment for another class. Another 

advantage of this approach is that we can adopt the set of balancing criteria to a particular 

class; for example, a student’s quantitative skills may be important balancing criterion for a 

quantitative methods course but not for an organizational behavior course. For this strategy 

to be effective, we must ensure that the groups are nonoverlapping, that is, ideally, each 

student should have a completely different set of partners in each of his or her study groups. 

In practice, the perfect nonoverlapping assignment is very difficult and often impossible to 

achieve. Nevertheless, we seek to minimize the overlapping.

To summarize, our goal is to create multiple sets of groups so that groups within each 

set are balanced and overlapping between sets is minimal.

2.6 R otm an’s Previous Group Creation Process

Until about 1990, Rotman had no centralized system for creating groups; it permitted 

students to pick their own partners, with no coordination of the resulting groups among 

courses. A group of close friends could form a study group and use it for all courses in 

the first year of the MBA studies. As group work became formally enshrined in the MBA 

curriculum in 1990s, the MBA office administrators took over the process of creating groups.

The process was manual, with office employees using their own judgment in assigning 

students to groups. Over time, as the balanced, multiple, nonoverlapping group policy 

took shape, and as MBA enrollments increased, this process became increasingly onerous 

to execute. By 2002, two employees were spending about a week creating the study groups. 

Even so, they had difficulty ensuring that the groups were well balanced with respect to
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several criteria; they could realistically consider only a few criteria. Creating balanced 

and non-overlapping groups was nearly impossible: typically, the employees would create 

first set of groups with some balancing in place and then they would create the other sets 

(groups to be used in other courses) to minimize the degree of overlapping with the first 

set but with no attention to the balancing criteria.

By 2003, when Rotman admitted its largest and most international first-year class ever, 

there were many complaints from both students and instructors about group composition 

and internal dynamics within groups. Students tended to blame the MBA office employees 

for putting them in inappropriate study groups, and dealing with these complaints took 

another toll on the limited resources of the MBA office.

2.7 The M anagem ent Science Approach

Underlying our approach is the recognition of the connection between the group creation 

problem and the classical management science assignment problem with side constraints.

Indeed, to create a single set of study groups, we need to assign students to groups, 

with each student assigned to only one group, and with each group satisfying upper and 

lower bounds on the group size - the standard assignment problem framework. In addition, 

each group must satisfy group-balancing constraints. Formally we define them as follows. 

The decision maker specifies balancing criteria j  — 1,2, ...C, and the property matrix with 

elements a,ij such that al} =  1 if student i possesses property j , and atJ = 0 otherwise. 

In addition, the decision maker sets the minimal and maximal group composition values 

or bounds (m irij ,m axj) so that a group is considered balanced with respect to criterion j  

if the number of students within the group that possess the corresponding property falls 

within the range specified by these bounds. One would normally start with the values of 

(■m irij,m axj) corresponding to perfect balancing with respect to all properties j  =  1,2, ...C,
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and then relax some of the bounds if no feasible perfectly balanced assignment can be found.

Formally we must find a feasible solution to the constrained integer problem below. Let 

yig =  1 if student i is assigned to group g for * =  1,2, ... iV and <7 =  1,2, ...G.

N

mirij <  E Vig^ij (2.1)
i — 1  

N

m a x j > E Vig^ij (2-2)
i = l

G

=  1 (2-3)
9 =  1

Uig  > 0 and integer (2.4)

for * =  1, 2, ...N , j  =  0, 1, 2, ...C, g = 1, 2, ...G.

In this problem for notational convenience we say that attribute 0 denotes “membership 

in the group”, and aM =  1 for all objects * =  1,2, ...N. Then each perfectly balanced group 

must consist of either miriQ =  |_^j or m axo =  |"̂ ~| objects.

The C  balancing constraints are not of the conservation of flow type. Thus, the resulting 

set of linear constraints is no longer of pure assignment problem form. In particular, when 

we add balancing constraints, the total unimodularity property that ensures all-integer 

solutions in a standard assignment problem is no longer satisfied, and we must solve the 

problem as an integer program.

In principle, the problem of finding a single set of balanced groups is a feasibility prob

lem, rather than an optimization problem, because any feasible solution to (2.1) - (2.4) 

defines a set of well-balanced groups. It is theoretically possible that no feasible solution

satisfying the entire set of group-balancing constraints exists. We can take two approaches

to overcome the possible lack of feasibility. First, we can treat the balancing constraints 

as soft constraints and use the goal programming framework with the deviation variables 

representing the degree of violation of each balancing criterion, and an objective function

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

that minimizes the sum of the violations or some similar objective; for example we can 

give higher weights to violations of criteria judged to be more important. Second, we can 

simply alert the decision maker to the problem infeasibility and suggest relaxing some of 

the group-composition bounds. In the Study Group Adviser software we implemented at 

Rotman we used the second approach.

Our computational tests of the comprehensive list of properties (Table 2.1) applied to 

the data for the classes of 2003 and 2004 showed that no infeasibilities arise. We could 

always create perfectly balanced groups with respect to all criteria of interest to the MBA 

administrators; in fact many group assignments satisfied all of the balancing constraints. 

The absence of any infeasible solutions continued after the administration started using 

the system to create many sets of groups for MBA students in the classes of 2005 and 

2006 (even though they expanded the set of properties). This could be partially due to the 

great care the Rotman admissions committee took to ensure sufficient diversity among the 

incoming students. In addition, in some cases the existence of perfectly balanced groups 

can be guaranteed. We study such cases in Section 3.1. Bhadurya et al. (2000) obtained 

similar results for a related problem.

For this data we could find a feasible solution to our formulation above without much 

difficulty using standard integer programming solvers on a reasonably powerful PC (we 

used AMPL CPLEX on a Dell PC with 512 MB of RAM). The solver found a solution 

within a few minutes for instances with 160 to 280 students and 30 to 50 groups.

Developing multiple sets of nonoverlapping balanced groups is much more difficult. In 

effect, we must simultaneously create Q sets of groups, with the groups in each set sat

isfying all of our constraints, while minimizing the degree of overlap between groups in 

different sets. An overlap occurs when we assign two students to the same group in dif

ferent sets. For example, suppose tha t we must assign four students, numbered 1,2,3,4, 

to two groups, and we must create two sets of nonoverlapping groups. Then the assign-
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ment [(1, 2), (3,4)], [(1,3), (2,4)] represents nonoverlapping groups, while the assignment 

[(1,2), (3,4)], [(1,2), (3,4)] contains four overlaps. In general, it may be impossible to avoid

overlaps entirely; rather the goal is to minimize the incidence of overlaps. The direct ap

proach is to formulate a model that assigns each student to multiple groups (one in each 

set), while maintaining the balancing constraints for each group in each set, with the ob

jective function measuring the degree of overlapping between different sets of groups. We 

present such model below.

Let yigs — 1 if student i = 1,2, . . .N  is assigned to group g = 1, 2, ...G in set s = 1, 2, ...Q, 

and yigS =  0 otherwise. Let Olws = 1 if students i and j  overlap (i.e. are assigned to the 

same group) in sets p  and s. The model follows:

Q Q N  N

Q — sets min E E E E  O i j p s
p=  1 s = p + l  i = 1 j = i + 1

S . t .  O i j p s  ^  Vigs  “1“ V jgs  “1“ Uikp “t“ V jkp  3 (^*5)

N

m i r i j < E yigs&ij (-Lb)
i = l

N

m a x j  >  E V ig s ^ i j  ( 2 - 7 )
i = 1

G

9=1

yigs binary, Oijps > 0

for all i , j  = 1,2, ...IV, g, k = 1, 2, ...G and p, s =  1, 2, ...Q.

Unfortunately the dimensionality of the resulting integer program is excessive. For

example, if there are 250 students and two sets of 50 groups, the resulting model has

275,000 integer variables and over 600 million constraints. Problems of this size cannot be 

handled with the off-the-shelf software and the type of computing equipment available in 

the Rotman MBA office.
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We developed a simple heuristic-based approach instead, based on the classical column- 

generation approach (Bazaara et al. 1977), recognizing the fact that the problem of creating 

several sets of balanced nonoverlapping groups has an easy sub-problem, the creation of a 

single set of balanced groups. We can treat each set of groups as one column, with the new 

columns added to the solution if they improve the objective function. However, instead 

of implementing the formal column-generation scheme (where we would select the new 

column to insert based on the computation of reduced costs or a similar rule) we initially 

generate a reasonably large number of columns and then obtain the best subset of columns 

by explicitly enumerating all possible subsets. We base this approach on the fact that the 

number (Q) of sets of groups required is typically small (usually Q = 2 or 3), and thus as 

long as the initial population of candidate columns is not too large (we found 20 to 30 to 

be adequate), we can evaluate all possible subsets fairly quickly. However, we must ensure 

that the initial population of columns is likely to contain some good candidates (with a 

low degree of overlap). To this end, we employ an objective function when generating 

feasible solutions to the single set model. Each objective function coefficient determines 

the suitability of assigning student i to group g. While, in principle, we could use an 

arbitrary objective function (since the single-set problem requires only the solution be 

feasible), we found that running the single-set model with two different objectives where 

the vectors of coefficients are uncorrelated tends to produce sets of groups with little overlap 

(uncorrelated coefficients tend to ensure that students end up in different groups in the two 

sets). Thus, to generate the initial population of columns for our heuristic, we run the 

single-set assignment model repeatedly with the objective function coefficients generated 

randomly for each run. This approach proved to be very effective, leading to low levels of 

overlapping, while maintaining the desired (usually perfect) group balancing. We used this 

heuristic as the analytical engine for our Study Group Adviser software package.

Our approach differs from the previous approaches to group balancing. A common 

methodology is to enforce balance by using weights, where each weight represents the rela-
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tive importance of the group being balanced with respect to the corresponding property. In 

an approach based on mathematical programming (for example, Desrosiers et al. 2005), one 

defines a balancing goal for each group with respect to each property (for example, an ideal 

group should contain 1.85 females) and then forms the objective function consisting of the 

weighted sum of deviations from the corresponding goals. In a heuristic-based approach, 

we may use weights to assign a single score to each student (Beheshtian-Ardekani and 

Mahmood, (1986), where the score is the weighted sum of students’ criteria values), or to 

pairs of students (Weitz and Jelassi (1992), where the score represents the weighted differ

ence of criteria values). Baker and Benn (2001), Weitz and Lakshminarayanan (1998) and 

Wright (2005) use similar weight-based approaches; Baker and Powell (2002) use weighted 

objective in seven out of the nine formulations they examine.

In our view, this approach suffers from several shortcomings. First, deviation-based 

objective functions typically result in very large, often nonlinear, models, that can be only 

solved with specialized algorithms or heuristics (Desrosiers et al. 2005). In contrast, our 

feasibility model is smaller and is quite easy to solve using standard off-the-shelf software. 

Second, using weights forces the decision maker (1) to set the values of the weights and (2) to 

understand the effects of these values on the resulting group assignment. The core of these 

problems is that the values of the weights have no physical meaning to the decision maker. 

As a result, he or she may have difficulty establishing the right values for the weights and 

understanding how they influence the quality of a particular group assignment (for example, 

if the assignment causes an unacceptable deviation with respect to a particular criterion, 

would doubling the corresponding weight solve the problem?) (Weitz and Jelassi 1992). A 

related problem is interpreting the value of the objective function in the approaches based 

on mathematical programming. For example, Desrosiers et al. (2005) describe an instance 

in which the objective function value is 255. Should the decision-maker interpret this to 

mean that the corresponding group assignment is sufficiently well balanced?
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In contrast, our feasibility-based approach is very intuitive, giving the decision maker 

direct control of the solution quality (through balancing constraints). If the upper and 

lower bounds for the balancing constraints reflect acceptable levels of deviation for the 

criteria, then any feasible solution is acceptably balanced. In particular, when a feasible 

solution is found for the problem with the ideal bounds, which happened in all cases for 

our application, we know that the current assignment is, in fact, perfectly balanced and 

cannot be further improved. To the contrary, the weights-based model may fail to find a 

perfectly balanced group assignment even when one exists, because of the nonintegrality of 

the goals. Indeed, if the goal is to have 1.85 females per group, the deviation-based approach 

may bypass a perfectly balanced solution (with one or two females in each group) and keep 

searching for a better solution. This behavior could explain why using our approach it takes 

minutes to create the groups for a large class of 275 students on a standard PC, while the 

studies listed above either rely (predominantly) on heuristics or on using powerful hardware 

for smaller problems.

The feasibility-based approach seems best suited for situations in which one can rep

resent all balancing criteria through binary properties (which a student either has or does 

not have). In some situations this is not the case. Cutshall et al. (2005) seek to balance 

groups with respect to the average historical grade per group, which is clearly not a 0/1 

measure. In such a case, the weight-based approach seems suitable (Cutshall et al. (2005) 

proposed a combination of the weighted objective and a feasibility-based model similar to 

ours).

The multiple group aspect of our model is novel. Desrosiers et al. (2005) seem to be 

the only other attem pt to create multiple sets of groups. They use a variable neighborhood 

search heuristic.
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2.8 The Study Group Adviser Software

Our ultimate goal was to implement our ideas and algorithms in a software tool for creating 

groups that would be versatile and simple to use. Versatility is necessary because many 

of the parameters of the group-creation process fluctuate constantly (including the number 

of students, groups, and lists of groups, and the criteria to use for balancing). Thus, a 

software package that could create groups based only on a hard-coded list of criteria would 

be of little use. The software had to be simple to use, because the MBA office employees 

who create groups are generally not familiar with management science concepts, and may 

not be sophisticated computer users.

We implemented the Study Group Adviser program as a Microsoft Excel macro (written 

in the Visual Basic for Applications language) since the potential users are familiar with 

the Microsoft Excel environment and use it for a variety of MBA program scheduling and 

management tasks. Users supply two types of inputs (Figure 2.1):

1. Basic parameters, such as number of students, number of groups, multiple lists, and 

data locations and output range;

2. Names, column identifiers, and upper and lower bounds for the balancing properties 

(ideal values for the bounds are computed automatically).

In addition, the program requires an input data table consisting of an Excel work sheet 

with a row for each student and a column for each balancing property; the 0/1  entries in 

each cell indicate whether a student satisfies the corresponding criterion.

Once the user supplies all the parameter values, he or she presses the Solve button, 

which invokes the macro that implements our heuristic (we use AMPL with the CPLEX 

solver to solve the integer programs).

We designed Study Group Adviser to detect various errors and suggest possible solutions
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Figure 2.1: Rotm an Study Group Adviser software interface. The upper block contains basic parameters, 

and the lower block lists names, locations, and bounds for the balancing constraints. Pressing Adviser 

button calculates the bounds corresponding to the perfect balance. Pressing Solve button generates the 

groups.

to the user. For example, if the assignment problem is infeasible, it advises the user to relax 

some of the bounds for the balancing constraints. The current version of the software does 

not specify which constraints to relax (in principle, one could iteratively relax constraints 

until a feasible solution is found). The MBA administrators frequently know what kinds of 

groups they want, which usually means achieving perfect balance with respect to only a few 

criteria and allowing some flexibility with respect to the rest. Thus, we left it to the users to 

determine which constraint (s) to relax in the event of infeasibility. So far feasible solutions 

have been found for all instances solved to date without relaxing balancing constraints.
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The software was well received by the MBA office personnel. Initially, the office man

agers worried that the software might be hard to use and designated one employee to be 

trained as a specialist. However, after a demonstration and training session, nearly all 

of the office employees creating student groups were quite comfortable using the package.

They first used it to create student groups for the 2005 class in August 2004, creating two 

sets of groups. They subsequently used it to reassign students to the two new sets of groups 

for the second semester of the 2004-2005 academic year.

The software proved to be sufficiently adaptable to deal with some group emergencies.

In one case, the members of one group proved to be incompatible, and the administrators 

decided to split up this group. By creating a new property called Incompatible, which 

was satisfied only by the members of the original group (that is, they received a 1 in the 

corresponding data column) and including this property as one of the balancing criteria, 

the employees created a new set of groups in which no members of the problem group 

overlapped.

2.9 Comparing Manual and Computer G enerated Groups 

for the Class of 2004

To assess software performance, we applied the Study Group Adviser package to the data 

for the class of 2004 and compared the quality of the resulting assignments with the original 

manually created groups. For this class, the MBA office staff originally created two sets of 

groups: the first set served as the main study groups and the office staff made an attempt 

to satisfy the balancing criteria. Then they generated the second set (called the alternate 

groups) to be nonoverlapping with the first set but without taking the balancing criteria 

into account.
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Figure 2.2: Quality of manually (hairline bars) and automatically created groups (bold bars) for the class 

of 2004. Descriptions of binary properties and corresponding criteria are given in Table 2.1.

We used our software to generate two sets of groups, both required to satisfy all of the 

balancing criteria, while we minimized the degree of overlap.

We first compared our groups to the main study groups with respect to the balancing 

criteria (Figure 2.2). We used 13 balancing criteria, and the software-generated groups 

outperformed the manually created ones with respect to all but one of the criteria (for 

which the performance was equal). The results were even stronger when compared against 

the alternate groups, which were not subject to balancing.

W ith respect to the nonoverlapping objective, the software-generated groups scored 

slightly worse than those produced manually; they had five overlaps, while the manual 

groups had none.

The MBA office managers much preferred the software-generated groups to the manually 

created ones, because they view good group balance as much more important than the 

presence of a few overlaps. As one of the managers put it, “Poor balancing affects a lot of 

students, while overlaps affect only a few.”
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The time required to create the groups was another important consideration. It took 

the MBA office employees eight person/days to create the group assignments for the class 

of 2004; the Study Group Adviser software handled this task in just 20 minutes.

The strong performance of our software on the class of 2004 test was an important 

factor in the decision to move forward with its implementation.

2.10 W ell-Balanced Groups in Action: The Class of 

2005

The switch to software-based groups was quite smooth, and the MBA office personnel ac

cepted the software quickly. The most serious issue that arose during the implementation 

concerned defining the balancing criteria. For a characteristic to be a good balancing cri

terion it must be common in the student population, otherwise many groups will contain 

no students with this characteristic. To create a common characteristic, we had to aggre

gate several basic characteristics into a new aggregate property. For example, one of the 

balancing criteria of interest was membership in a collaborative program; we wanted to bal

ance the student groups with respect to the number of students from such programs. The 

Rotman MBA program has ongoing collaborative programs with six other departments in 

the university, but the number of students in each of these programs is quite small. Thus, 

if we set up separate balancing criteria for the six collaborative programs, most of the 

groups would have no representative from any one program. On the other hand, one group 

could end up with representatives from several different collaborative programs since the 

balancing requirement would apply to each criterion separately - an undesirable outcome. 

To resolve this issue, one should define a new aggregate property, membership in any of 

the collaborative programs, and balance with respect to this property instead. Similarly 

if we define citizenship criteria for individual foreign countries, the resulting number of
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students from most countries would be too small to achieve true balancing, while could 

create a group with a large number of foreign students, all from different countries. Once 

we aggregate the citizenship property sufficiently (Table 2.1), this problem disappears. It 

did not take long for the MBA office employees to learn to resolve these issues on their 

own.

Preparing the input data table has not been a problem because the property membership 

data are recorded during the admission process and are available electronically. User can 

either import this data into the Excel work sheet directly or code it as columns of 0’s and 

l ’s using the standard Excel tools and functions. We have been pleasantly surprised by how 

painless the software adoption process has been; over a year we received no service calls. The 

MBA office personnel can quickly create groups and instructors now routinely ask them to 

set up special groups for particular projects, and they create new group assignments within 

a few hours.

A somewhat unexpected side benefit of the software was the reaction of the MBA 

students to the new system: a drastic drop in the number of complaints about being placed 

in the wrong group. Apparently, the fact that a sophisticated computer tool created the 

assignments to study groups made them more acceptable to the students. This effect was 

important to the MBA office and to the Rotman School in general, since student complaints 

about group composition had been a sore point in the past.

More important issue is the overall impact of multiple well-balanced groups on the 

educational process at Rotman. Certainly, students see group-based work now as more fair 

(since no group is composed solely of engineers or foreign-language speakers). Intragroup 

dynamics seem more sensitive since the school implemented group balancing. Students are 

forced to collaborate with partners they did not choose. When students were allowed to 

form their own groups, the groups were more homogeneous, and their problems had to do 

with intergroup differences. The current approach has eliminated most of the intergroup
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Table 2.1: Balancing Criteria, Corresponding Binary Properties and Group Composition 

Values for the Class of 2005._______________________________________________
B alan cin g

C riteria P rop erty  nam e and descrip tion

M in  and M ax  

com p osition  values

Size of 

the group

Equals 1 for every student 5 - 6

Gender Equals 1 for females 1 - 2

Collaborative Equals 1 if a student is from 0 - 1

program a collaborative program

Academic BCOMM: equals 1 if a student has 1 - 2

background a degree in business/comm erce

ECO: equals 1 if a student has 

a degree in economics

0 - 1

QUANTI: equals 1 if a student has 

a degree in a quantitative discipline 

(e.g. engineering, mathematics)

2 - 3

SOCIAL: equals 1 if a student has 2 - 3

a degree in a social discipline 

(e.g. psychology, law)

0 - 1

Industrial FINBANK: equals 1 if a student has 1 - 2

background work experience in finance or banking

IT: equals 1 if a student has

work experience in information technology

or telecommunications

1 - 2

CONSULTING: equals 1 if a student has 

work experience in consulting

0 - 1

SERVICES: equals 1 if a student has 

work experience in services

1 - 2

Citizenship Canada/US 3 - 4

India/Pakistan 0 - 1

Asia 1 - 2

International Equals 1 if a student too TOEFL  

test (test of Enlish as a foreign language

1 -  2

Cultural Equals 1 if a student has Canadian 

or US citizenship and is not a new 

immigrant.

2 - 3
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problems, but the enforced within-group heterogeneity brings about its own problems.

Assigning students to multiple nonoverlapping groups seems to have reduced the amount 

of work splitting among groups members, at least with respect to group-based assignments 

from different classes. Group members splitting work on major assignments for a particular 

class is still quite common; group creation strategy cannot accomplish much in this regard. 

In addition, the school established only two sets of groups for 2004-2005, and students 

typically take four to six classes each semester, which means that the same groups were 

typically used in several classes each term, increasing students’ opportunities for work 

splitting. Perhaps the school should consider increasing the number of sets of groups to 

match the number of classes with major group assignments.

Do the heterogeneous groups produce better quality work than the homogenous groups 

of the past, as the organizational behavior theory would suggest? This question is hard 

to answer and would require a separate study. In particular, Rotman has tightened its 

admission standards progressively over the last several years, improving the quality of the 

incoming students. Thus, while most instructors would agree that the average quality of 

student work (both individual and group based) has been improving, which, if any, part 

of this improvement can be traced to better group composition is not clear. We note 

that researchers seeking to evaluate the impact of group balancing on learning outcomes in 

business schools found it has little or no effect (Donohue and Fox 1993, Muller 1989).

Overall, however, the students, faculty, and the MBA office staff seem to be happy with 

the new system for creating groups. The school has no plans to revert to self-selected or to 

manually created groups.
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2.11 Conclusions

In this chapter we studied how organizations can create efficient work groups or teams that 

would be maximally successful in performing diverse and complex tasks. Coming up with 

the groupings is usually hard, since one must simultaneously consider a variety of different 

factors, and as the number of groups and factors increase, manual creation of balanced 

groups becomes inferior. Non-surprisingly this problem attracted considerable attention in 

the management science and decision analysis literature. By far the most frequent approach 

is to set up balancing goals and search for the partitions that minimize some measure of 

deviations from these goals, such as sum of squared deviations. The major problem with 

implementing such approach in practice is that such objective has no physical meaning to 

decision maker and causes a lot of confusion; this problem has been reported by a number 

of researchers. The approach we take is different. In effect it brings the thinking of the 

decision maker into the model.

Our approach is based on constraining balanced groups with the minimal and maximal 

amount of each attribute per group - precisely what decision maker is trying to achieve 

in her mind. We formulate group balancing problem as a constraint integer program and 

search for the feasible solution with arbitrary objective. This approach appears to be very 

successful. It has been implemented and is used at Rotman School of Management for 

several years. We report major improvements in various issues involving group work. In 

addition we report a heuristic that creates multiple lists of minimally overlapping groups. 

Such feature is often desirable if individual group members must work in several groups.

Even tough the constrained approach seems to work well, theoretically it is quite sur

prising: one would typically expect that no feasible solution would exist or it would be hard 

to find, especially when the program becomes very constrained. To better understand the 

limitations of our approach as well as find the reason for why it works well in practice in
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the next Chapter we study the conditions that guarantee the existence of balanced groups, 

and quantify the probability to find a partition.
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Chapter 3

Balanced M ultiple-A ttribute Set 

Partitioning Problem

3.1 Introduction

The problem of creating MBA study groups described above is an application of the 

following more general problem. Consider a set S of N  objects {si, S2 , ■■■sn}, where 

each object is characterized by a vector of C  attributes {1. 2, ...C} through a matrix 

A  : = 1 , 2 =  1,2...C} such that al3 =  1 implies that object i possesses

attribute j , and ai3 = 0 implies the reverse. The problem is to partition these objects into 

G perfectly balanced groups as described below.

Let Cj =  aiji 0 <  Cj <  N , be the column sum for the j th column of A. Observe 

that c3 represents the total amount of attribute j  contained in set S. Let mirij = and 

rnaxj =  [T£] denote the minimal and maximal amount of attribute j  that each group is 

allowed to possess to be balanced. To define the number of objects per group (size of the 

group), augment A by a column of ones, i.e. let ai0 = 1 for all i = 1 , 2 Then let
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mino =  L^J and m axo =  [yv] denote the number of objects that each group is allowed to 

possess.

Recall yig =  1 if object i is assigned to group g for i = 1,2, ...N  and g = 1,2, ...G. 

Perfectly balanced multiple attribute set partitioning problem (BMASP) is to partition set 

S into G groups such that

We use the term ’’perfectly” balanced to stress out that the values of mirij and maxj 

defined above are as tight as possible (recall the discussion of 1.82 females per group). 

In general one could seek a partition in which the group composition values mirij and 

m axj could not be this tight; for example, each group could contain 1 to 3 females. Since 

the existence of a perfectly balanced partition obviously implies the existence of the other 

types of balanced partitions, we only consider the former, and hereinafter refer to them as 

balanced (that is we omit the adjective ’’perfectly”), leading to the BMASP problem.

There are several approaches that could be used to search for balanced partitions. In 

the Rotman project we took a feasibility approach: we set up an arbitrary objective and 

searched for a feasible solution to the BMASP formulation. As discussed above, such 

approach is more appealing to the decision makers and we see this as the primary reason 

for its successful implementation. However, feasibility approach would be of little use if 

the resulting integer program (3.1)-(3.3) would often be infeasible (i.e. balanced partitions

{B M A SP )

N

mirij < Y , y igaij for a11 j  = 2> •••£'>3 =  1> 2> •••G (3.1)
i = i

N

m axj ^  Vi9aii for a11 j  = °> 2’ - C ’ 9 = 1,2, ...G (3.2)
i = 1

G

1 for all i = 1, 2, ...N (3.3)

yig G {0; 1} for all i = 1,2, ...N ,g = 1, 2, ...G.
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a i j Gender Siblings Vegas

Ross 1 1 1

Chandler 1 0 0

Monica 0 1 0

Rachel 0 0 1

Table 3.1: An example where balanced groups do not exist

would fail to exist in many instances) or if feasible solutions would be hard to find. As 

noted, this was not the case in our implementation: many feasible solutions existed and 

were easy to find for all instances solved to date. That is our feasibility based approach 

appears to be quite practical.

Theoretically, however, the existence of such partitions is quite surprising. Intuitively, 

as we add more attributes the integer problem becomes increasingly more constrained, 

increasing the chances that no feasible solution exists. So why is that feasible solutions 

appear to be so frequent in practice? In the remainder of the chapter we present some 

results explaining why and when feasible groups exist.

To further motivate our work we present a simple example where balanced groups do 

not exist. Consider four friends, whom we want to split into two groups: Ross, Rachel, 

Monica and Chandler; and consider three attributes: gender, siblings, and “married in Las 

Vegas and then divorced”. The attribute matrix {% } is given in Table 3.1.

In this example N  = 2, G =  2, C  =  3, Cj =  2 and mirij = m axj = 1 for j  =  1, 2,3. 

Verbally, each balanced group should consist of two friends, one of which should possess 

one unit of each attribute.

It is easy to see that balanced groups do not exist in this example. Indeed, the first 

attribute implies that Ross must be in a group with either Monica or Rachel. The second 

attribute implies tha t Ross cannot be in a group with Monica because they are brother 

and sister, while the third attribute implies that neither he can be in a group with Rachel,
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since they married in Vegas and then got divorced. Therefore not two, but even one group 

cannot be created. In fact, we shall see that the subproblem of creating one group plays 

an important role in our analysis.

To characterize the conditions when balanced partitions exist we develop the following 

equivalence relations.

3.2 Equivalence Relations between BM A SP Instances

We present two kinds of equivalence relations. The first one allows us to assume without loss 

of generality that the number of objects per group, N /G , is an integer. The second allows 

to draw equivalences among the problems with different number of objects and groups, but 

with the attributes of the same types (the concept of type is described below).

3.2.1 N um ber o f O bjects Per Group

Consider an arbitrary BMASP instance and the corresponding matrix A  such that N /G  is 

not integral. In such instance each balanced group should contain either mino = |_^J or 

m axo =  |~(=7~| objects. We refer to this instance as the original instance.

For such original instance with A  and G construct an induced instance B M A S P  with 

A' =  N ' x C' and the same G groups in the following way. Let N ' =  and let

C' =  C  +  1. Create one dummy attribute C' and N ' — N  dummy objects such that real 

(not dummy) objects possess the same real attributes in both instances, dummy objects 

possess one unit of dummy attribute and no real attributes, while real objects do not 

possess dummy attribute. That is for i — N  +  1, N  +  2, ...N ', a'.c , =  1 and a - = 0, and 

for * =  1,2, ...N , a'iC, = 0  and for j  =  1,2, ...C. Observe c'j = Cj for j  =  1, 2, ...C,

N '/G  is an integer, cc> = N ' — N  < G and hence min'c , =  0 and m axc > =  1. Finally
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observe that m in 0 =  m ax0 =  N '/G  =  m axq.

T h eo rem  3.1 A balanced partition in the original instance of B M A S P  exists if  and only 

i f  one exists in the induced instance B M A S P ' .

P ro o f. Let pmm and pmax be the solutions to the diophantine equation pminmino + 

pmaxm ax0 = N . Observe that balancing of the original instance with respect to size implies 

that there are pmin groups of size mino and pmax groups of size m axo- By the construction 

of B M A S P ' , pmm = N ' — N  =  cc>, i.e. there are pmin dummy objects.

In addition by the construction of B M A S P ', c';j = Cj for j  = 1,2, ...C, and hence 

min'j =  m inj and max'j =  m axj for all real attributes. Therefore, since dummy objects do 

not possess real attributes, adding (removing) dummy objects to (from) a balanced group 

does not affect its balance with respect to real attributes.

Therefore, if there exists a feasible partition in B M A S P ,  then adding one of pmm 

dummy object to each of the pmin groups with mino objects results in a balanced partition 

in B M A S P '  since each group contains N ' / G  objects, m inj or m axj of which possess real 

attributes j  = 1, 2, ...C and each group possess min'c , =  0 or max'c , = 1 dummy objects, 

which, by definition, possess one unit of dummy attribute each.

Likewise, if there exists a feasible partition in B M A S P ' , then since max'c , — 1, each 

group of N ' / G  =  m axo objects contains at most one dummy object. Since there are pmm 

dummy objects and for all real attributes min'j =  m inj and max'j =  m axj, removing the 

dummy objects from the corresponding groups results in pmm groups of size m axo — 1 =  

mino and pmax groups of size m ax0 which are all balanced with respect to real attributes. 

By definition such partition is a balanced partition in B M A S P .  ■

Following Theorem 3.1 in the remainder of the chapter we assume N /G  is an integer 

and for notational convenience we let k = N /G . That is without loss of generality we
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consider only the instances where each balanced group should consist of exactly k objects. 

In the BMASP formulation, we therefore can rewrite constraints (3.1) and (3.2) for j  — 0 

as Vig = k ,g  = 1, 2, ...G.

We further note that balancing with respect to an attribute is equivalent to balancing 

with respect to its negation. For example, in Table 3.1 for the first attribute (’’Gender”) 

we could as well have used 1 to denote females; likewise we could have used 1 to denote 

’’not siblings” in the second attribute, etc. Therefore without loss of generality we make 

the following assumption:

A ssu m p tio n  1 kG > 2m axj=i,...c Cj. Equivalently, k > 2m axj for all j  =  1

3.2.2 Equivalence C lasses

Consider two instances B M A S P i and B M A S P 2 and the corresponding matrices A\ =  

{N\ x Ci) and A 2 = (N2 x C2) that have to be partitioned into and G2 groups of size ki 

and k2 respectively. We use subscripts 1 and 2 to distinguish between various parameters 

of these instances.

Let the pair (m inj, m ax j) denote the type of the attribute. We say that attributes j  

and j '  are of the same type if m inj = m in j/ and maxj =  maxji. Let Tj be the set of all 

types of attributes that instance i has and let t{h t be the number of attributes of type

(h, h) that instance i has, (h, h) £ T<, i =  1,2. Observe Xq/i,H)et, = C*•

We say tha t instances B M A S P i and B M A S P 2 are the same equivalence class if:

1. k\ — k2 = k for some k ;

2 . G\ =  G2 =  G for some G\

3. T i =  T 2 =  T  for some set T;
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4- *(h,fc), i =  fy,S),2 =  Hh,h) for some t(h,h) for a11 (/l>

We denote such equivalence class by E(G, k, T , where {t^h^ }  is a vector of

values.

In words, two instances of BMASP are equivalent if they have the same number of 

objects, the same number of attributes of the same types and are required to be partitioned 

into the same number of groups of the same size.

The following observation is intuitive:

O b se rv a tio n  1 Consider two instances with attribute matrices A and A! in equivalence 

classes E(G, k, T , {t^h^ } )  and E ’(G, k, T \  respectively. I f  A' C  A  and instance A'

cannot be partitioned into balanced groups, then a balanced partition also cannot exist for 

A.

We refer to the attributes of types (*, i) for some i as of the fixed type (i.e. if attribute 

j  is of the fixed type then m inj =  m axj). Otherwise, the type is variable.

Observe that if an equivalence class contains only fixed attributes, then with respect to 

the attribute of a given type, all instances in such a class have the same Cj values, because 

for fixed types c3 =  Gminj =  Gmaxj. To the contrary, if an equivalence class contains 

variable attributes, then even with respect to the attributes of the same type, Cj values 

can be different, because for variable types Cj E {G m inj +  1,..., Gmaxj — 1}. Therefore 

to distinguish between the instances in the same equivalence class, E, but with different Cj 

values, we say that an instance is in the sub-class ce, where ce =  {ci, c2, ..xy} is a vector 

of some given Cj values of instances in E.

The remainder of the chapter is organized as follows. In Section 3.3 we present the 

worst-case analysis and characterize the the properties of equivalence classes for which a 

balanced partition may not exist. Then in Section 3.4 we present probabilistic analysis of
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the likelihood that a random instance in a given equivalence class can be partitioned into 

balanced groups.

3.3 W orst-case Analysis

In this Section we study the properties of equivalence classes which lead to the existence of 

the instances for which balanced partitions do not exist. While we are generally interested 

in the existence of partitions, a partition obviously cannot exist in the cases when even 

a single group does not exist. Therefore we study both a single group sub-problem and 

a problem of creating a partition. We suggest two complementary approaches, one based 

on exploring block structures in the attribute matrices, and another based on constructing 

and solving a cover problem.

We start with a ’positive’ result.

T h eo rem  3.2 Every BM ASP instance with 2 attributes can be partitioned into balanced 

groups.

P ro o f. Suppose arbitrarily that Ci <  C2- Observe it implies m ax i <  m ax2 <  m in2 +  1. 

Let qj for j  = 1,2 be the solution to diophantine equation qjminj +  (G — qj)maxj = Cj, 

i.e. a balanced partition with respect to attribute j  consists of q3 groups with m inj of this 

attribute and G — q3 groups with m axj.

Observe tha t in an attribute matrix with C =  2 columns there are four unique rows: 

{1, 1}, {1, 0}, {0 , 1} and {0 , 0}.

Take the first m ini rows (objects) with ’1’ in the first column and assign them to group 

1, repeat qi times to create q\ groups with m ini of attribute 1. Then assign the remaining 

(G — qi)m axi rows (objects) with T ’ in column 1 to the remaining (G — qi) groups with 

m ax 1 of attribute 1 each.
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By construction, each group contains mini  or m ax i of attribute 1, and at most m ax i < 

m ax 2  of attribute 2. Furthermore, every row {1,1} is already assigned to some group, and 

so every unassigned row that has ’0’ in column 1. Therefore, assigning rows {0 ,1} in a 

greedy manner to each group such that it has m in 2 or max 2 of attribute 2 results in groups 

that are balanced with respect to both attributes, and the only unassigned rows are {0, 0}.

Since each group contains at most 2max2 objects, and by Assumption 1 2max2 < k, 

assigning rows {0 , 0} in a greedy manner to each group results in a balanced partition. ■

Interestingly, for all C  >  3 there exist instances in which balanced partitions do not 

exist. We study such instances next.

3.3.1 B lock-m atrix approach

To build the complexity gradually we study three versions of BMASP problems: two re

stricted problems, one with identical fixed attributes and the second with non-identical 

fixed attributes, and a general BMASP as per Section 3.1.

T he Case w ith  Identical F ixed A ttributes

In this subsection we consider equivalence classes where all attributes are of type (m , m ),

i.e. with minj = maxj  =  m  for all j  = 1,..., C  for some m , C  > 1. For a given number of 

groups, G, and a number of objects per group, k , this equivalence class is E (G ,  k, {m}, C ). 

In light of Assumption 1 throughout this Section we assume k > 2m.

We require the following definition:

D efinition 1 A block (C,p,q), where C,p,q > 1, is a (p x C) matrix D,dij = {0; 1} such 

that p dij = q for all j  = 1, ...C and Xq=1 c  dij —  ̂ f or a^ * =  h  ••■P-
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In words, a block is a 0 — 1 matrix with positive row sums and equal column sums.

If in a block (C,p, q) there exists a subset of rows that form a (smaller) block (C,p ', q'), 

where p' < p — 1 then we say that (C.p1, q') is a sub-block (note that since column-sums 

in a block are positive we must have q' < q — 1). Observe that by definition of a block, 

the rows of (C ,p,q ) that are not in (C,p',q') also form a block (sub-block). A block is 

indivisible if it contains no sub-blocks.

Consider an arbitrary instance in E (G ,k ,{m } ,C) .  This instance is described by the 

m atrix A = (kG x C) with the column sums cj = mG  for all columns (attributes) j  =

1,2, ...C. Therefore for some P  < kG, A  consists of a (C ,P ,m G ) block, augmented by 

kG  — P  all-zero rows. Likewise, in a balanced partition each group of k objects contains m  

objects that possess attribute j  and k — m  objects that do not possess attribute j ,  for all 

j  =  1,2, ...C. Thus for some p < k a balanced group is a (C ,p ,m ) block, augmented with 

k — p all-zero rows.

Let A ' be the matrix obtained from A  by deleting all-zero rows. We call A' the attribute 

matrix block. The following observation follow immediately from the discussion above.

O bservation 2 Suppose A consists of a block A! and p all-zero rows. Then

• if A' can be partitioned into G balanced group sub-blocks, (C,pg,m ), pg < k,g  =  

1, ...G, then G groups exist;

• if A' contains one balanced group sub-block, (C,p , m), p < k and k —p or more all-zero 

rows, then at least one balanced group exists;

• if A ' does not contain a group sub-block or there are less than k —p all-zero rows, 

then no balanced groups exist,

For r > 2 consider a square (r x r) matrix with Os on the main diagonal and Is in 

all off-diagonal entries. Note that it forms a block (r, r, r  — 1); we refer to such a block
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as D (r,r,r  — 1). Blocks D (r,r,r  — 1) are indivisible for any r; see Proposition 3.1 in the 

Appendix.

Let jm be the largest integer such that m  is divisible by all integers i € (1,..., j m). Next 

we present our main result for the case with identical fixed attributes.

T h eo rem  3.3 For any G > j m + 1 and C  > j m + 2 there exists an instance in E(G, k, {m}, C ) 

for which a partition into G balanced groups does not exist.

P ro o f. By Observation 1 it is sufficient to consider only the equivalence classes with 

C = j m + 2 . Consider two cases:

C ase 1: G is d iv isib le  by  j m  +  1. Let i = and q =  mi. Note that ( j m  +  1 )q = mG
J m  ~r J-

and kG  — q ( j m +  2) >  kG — 2q( j m +  1) >  (k — 2m)G  >  0 because k > 2m by 

Assumption 1. Create (q(jm + 2) x (jm + 2)) matrix A! by adding (one below another) 

q blocks D ( j m +  2 , j m  +  2, j m +  1). Augment A'  with kG — q( j m +  2) >  0 zero rows; 

call the resulting matrix A. By construction, A is a (kG x (j m + 2)) matrix with 

column sums (j m +  \ ) q  =  mG.  That is A  is an attribute matrix of an instance in 

E (G ,  k, { m } , j m  +  2).

Next we show that for every subset of rows in A  with equal column sums (a sub-block 

or a sub-block augmented by all-zero rows), the column sum is divisible by j m +  1.

Since every non-zero row in A  comes from D ( j m  +  2, j m  + 2, j m +  1), let row q be of 

type i if dqi =  0, q, i =  1, . . . j m  + 2. Observe that a collection of rows, one of each 

type, is a block D ( j m  +  2, j m  +  2, j m  + 1).

From Observation 2 non-zero rows of a balanced group in E (G ,  k, { m } , j m  +  2) must 

form a block (j m + 2,p,m), p < k. Suppose such a block exists and call it D'. Let ki 

be the number of rows of type i in D’\ note ^  =  P- By construction, column

i of D' has column sum ct =  p — ki. Therefore, since D' is a ( j m  +  2,p, m) block
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all column sums equal to m  and so ki = for all i, i' = 1, . . . j rn  +  2. Hence D' 

contains equal number of rows of each type, i.e. D1 is an integral number of copies of 

D (jm + 2 ,jm + 2 ,jm + l) added one below another. Thus m divides by j m + 1, which 

contradicts the definition of j m.

C ase 2: G is n o t d iv isib le  by  j m +  1. Let q =  n° te rnG =  q(jm + 1) +9,  where

g € {1, Create a (q(jrn +  2) x C) matrix A'  by adding (one below another) q

indivisible blocks D(jm + 2 , j rn +  2, j rn +  1); note C = j m + 2. Augment A'  with g 

all-ones rows and k G —q(jm + 2)—g all-zero rows; call the resulting matrix A. Observe 

kG  -  q(jm +  2) -  g > kG  -  2q(jm + l ) - 2 g  = k G -  2(q(jm +1) +g) = G ( k - 2 m )  >  0. 

By construction, A is a (kG x C) matrix with column sums mG.  That is A  is an 

attribute matrix of an instance in E(G, k, {m}, C ).

Recall tha t vector r  =  ( r ( l) ,  ...r(jm +  2)} (a row in A) is of type i if r(i) =  0, 

i = 1, ...jm +  2 and r(i') =  1 otherwise. Observe that A  contains q rows of each of the 

types 1, ...jm +  2 and g all-ones rows.

By the same argument in the Case 1, every block that contains only rows of types 

1, ■■■jm +  2 has column sums divisible by j m + 1. Therefore, each balanced group must 

contain at least one all-ones row. Since by construction there are g < j m < j m-|-l < G 

such rows in A, G balanced groups do not exist. ■

We note that if G is divisible by j m + 1 then not only the balanced partition, but even 

a single balanced group cannot be constructed (for example, for odd m  and even G).

To visualize the ’worst-cases’ with identical fixed attributes, in Table 3.2 we present the 

the number of attributes, C, for different G ,m ,k  = 2m for which balanced partition may 

not exist. It is easy to observe that in the most cases* relatively few attributes are required.

*Some of the entries that correspond to the ’’small” G  cannot be established using our analytical results 

presented in the current Section. We suggest an approach to finding such values in Section 3.3.2.
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m
1 2 3 4 5 6 7 8 9 10 11 12

c
n ii to 3 3 3 3 3 3

COII 3 4 3 4 3 3 4 3 4 3

II 3 4 3 4 3 5 3 4 3 4 3
G = 5 3 4 3 4 3 5 3 4 3 4 3 6
G = 6 3 4 3 4 3 5 3 4 3 4 3 6

Table 3.2: Number of attributes, C , for which balanced partition does not exist, for different 

G , m , k  = 2m.

Next we show that this observation and the the block-matrix approach in general can be 

extended to the equivalence classes with non-identical fixed and variable attributes.

T he Case w ith  N on-identical F ixed A ttributes

In this section we consider BMASP problems in which all attributes are of the fixed, but not 

necessarily of identical types (recall that the type of an attribute is a pair (mirij,maXj)). 

For notational convenience we refer attribute of type (h , h) as type h. Note that in the 

previous subsection, all attributes were assumed to be of the same type, m.

Using the notation from Section 3.2, T  C  {1, 2, ...H} denotes the set of attribute types, 

and th € [0, C] denotes the number of attributes of type h, h E T.  For notational conve

nience we assume that T  = {1, 2, ...H}, and if an instance does not have any attributes of 

a certain type, e.g. h, then th =  0. This way H  is the largest number of objects per group 

tha t possess the same attribute. Consistent with this, Assumption 1 implies k > 2H.  Thus 

the corresponding equivalence class is E(G, k, {l...iif}, {U-••£?/}).

It follows from Theorem 3.3 and Observation 1 that if there exists an attribute type 

h E T  such tha t th > jh + 2 and G > jh + 1, then we can construct an instance which cannot 

be partitioned into G balanced groups. Below we provide a stronger result by showing that 

even when th < jh + 1 holds for all h, balanced partitions may not exist when the number
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of attributes of some type exceeds the j h ~ value of another, “less divisible” type (i.e., the 

jh value of which is smaller).

Theorem  3.4 Suppose in E(G,k ,{ l . . .H},{t i . . . tH})  there exist two attribute types, i and 

i', U,ti> > such that i < i', ji < j t y  > ji + 1. Then for G > j\  +  1 there exists an 

instance in E{G , k, {1 - H},  {t\...tjf}) for which a balanced partition into G groups does not 

exist.

Proof. By Observation 1 it is sufficient to consider only the equivalence classes with U = 1,

U1 = ji +  1- Suppose G = ji +  1.

Create ((i(ji +  2) +  (i1 — i)G) x (ji +  2)) matrix A  by adding (one below another) i 

blocks D(ji  +  2, ji +  2,ji +  1) and add (from below) (i1 — i)G rows of type 1 (recall that 

we say that a row is of type i if its ith coordinate is zero and all other coordinates are 

ones). By construction A  has (ji + 2) columns and column sum i(ji +  1) =  iG in the 

first column and i(ji +  1) +  (i' — i)G =  i’G in other ji + 1 =  t# columns. Note that 

kG — i'G — i > (k — H)G — H  > H(G  — 1) >  0 because by Assumption 1 k > 2H  and 

by construction i, i' < H.  Therefore augmenting A  from below with kG — i'G — i all-zeros 

rows results in matrix A  of an instance in E(G,/c,{z,z/} ,{ l, ji +  !})•

W ith respect to an attribute of type i, each balanced group must contain i rows of 

types 2, ...ji +  2 (because rows of type 1 do not have 1 in the first coordinate). Let kp be

the number of rows of type p =  2, ...ji + 2 that such a group contains. Then in columns

p =  2, ...ji + 2, this group has column sums i — kv. Thus in order to have equal column 

sums with respect to attributes of type i! the group should contain equal number of rows 

of each of the types p  =  2, ...ji + 2 (ji +  1 types in total). Hence, i should be divisible by 

ji + 1, which contradicts the definition of ji.

Finally, if G > ji +  1 then, modify A' as in the Case 2 of the proof of Theorem 3.3; the 

claim holds by the same argument. ■
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Type 1 Type 2 Type 2

0 1 1

1 0 1

1 1 0

0 1 1

0 1 1

Table 3.3: An instance in E(2, k, {1,2}, {1,2}) for which partition does not exist (all-zero 

rows are omitted)

To visualize the difference between Theorems 3.3 and 3.4 consider the equivalence class 

with one attribute of type 1 and two attributes of type 2 . None of these attributes alone 

could prevent the existence of balanced partition, since, by Theorem 3.3 there has to be 

j i  +  2 =  3 or more attributes of type 1 or j 2 +  2 =  4 or more attributes of type 2. At 

the same time, an equivalence class containing both these types must contain an instance 

where balanced partition does not exist, since by Theorem 3.4 with j =  l , i '  =  2 we have 

t2 =  2 >  2 =  j i  +  1. An example of such instance is shown on Table 3.3 for the case with 

G =  2 (all-zeros rows are omitted).

Note that Theorem 3.4 assumes that a less divisible attribute must be of a “lower” type 

(condition * <  %' in the statement of the Theorem). Next we discuss a more general case 

with two attribute types: fj of type i and A of type i \  and no assumption about the 

ordering. For the ease of exposition assume that ji < ji> and i < i'. We also assume that 

U <  ji +1) since otherwise by Theorem 3.3 a partition may not exist; and that t% > 2, since 

if ti = 1 then tt> = ji> +  2 — =  j v +  1 > ji + 1 and a thus a partition may not exist by

Theorem 3.4.

T h eo rem  3.5 Suppose in E(G, k, {1...H}, { ti...£#}) there exist two attribute types, i and 

i!, ti,tii > 1, such that ti +  tii > jii + 2, i /  ti> and i' < Then for G divisible by

ji + 1 there exists an instance in E(G, k, {1...H}. {ti...tH}) for which a balanced partition 

does not exist.
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Proof. In light of Observation 1 suppose U +  tv = jv  +  2 and w.l.o.g. assume G = jv  +  1. 

Create matrix A'  by adding one below another i blocks D(jv +  2, jv  +  2, jv +  1) and augment 

it with G(i' — i) row vectors of length t% +  tv with zeros in the first U components and ones 

otherwise. For notational convenience we denote such row as 0...01...1. By construction A' 

has column sums Gi in the first ti columns and sums Gi' in columns tt + l . . . . t t + tv ■ Thus 

for k =  2i', augment A! with kG — i'G — i > 0 all zero rows; the resulting matrix (refer 

to it as A) is an attribute matrix for an instance in E(G, k, {i, z'}, {U, tv}). For notational 

convenience we refer columns 1, ...ti as type i and columns ti + 1, ...ti + tv as type i'.

Observe tha t a group that is balanced with respect to attributes of type i must contain 

either of the following rows (we refer to such groups as types 1,2,3 respectively):

1. i rows of types U + 1, ...U + tv and no rows of types 1, ...ti;

2. rows of each of the types 1, ...ti and no rows of types ti +  1, ...U + tv. Note ^-j- 

is an integer, because U > 2, f, <  +  1.

3. p copies of rows of each of the types 1, ...ti, p £ [1, •••prx — 1]) plus z — p{U — 1) rows

of types ti +  1, ...ti +  t v■ Note z — p(ti — 1) >  1.

For a group of type 1, observe that unless i = tv, by the same argument as in the proofs 

of Theorems 3.3 and 3.4 there exist two columns of type i' with unequal column sums. 

Thus if i ^  tv, since all remaining rows have ones in the columns of type i ' , such group 

cannot be balanced with respect to attributes of type i ' .

A group of type 2 has column sums in every column of type i!. Thus if i' < ijrti  

then such group cannot be balanced; otherwise we must add i' — rows 0 ...01...1.

A group of type 3, in order to have equal column sums, must contain equal number 

of zeros in each column of type i!. Since there are in total z — p(U — 1) zeros in columns

of type i' and there are tv such columns it follows that p =  for I = 1,... |_y;J ■ Since
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Type 2 Type 2 Type 3 Type 3

0 1 1 1

1 0 1 1

1 1 1

1 1 1

0 1 1 1

1 0 1 1

1 1 1

1 1 1

0 0 1 1

0 0 1 1

0 0 1 1

Table 3.4: An instance in E(3, k, {2,3}, {2,2}) for which balanced partition does not exist 

(all-zero rows are omitted)

a balanced group must have columns sums i! in every column of type i', we must add 

i' — (i — p(ti — 1) — 1) > i' — i rows 0 ...01...1.

Finally observe that under the conditions of the Theorem, the only balanced groups are 

that of type 3 and thus G balanced groups of type 3 require G{i!—(i —p(tt — 1) — 1)) > 

rows 0 ...01...1. ■

To visualize the difference between Theorems 3.4 and 3.5 consider equivalence class with 

2 attributes of type 2 and 2 attributes of type 3; attribute matrix of an instance with G — 3 

for which balanced partition does not exist is presented in Table 3.4. Theorem 3.4 cannot 

be applied to this example, since a less divisible attribute is of the higher type. At the same 

time, i = 3, =  2 and 3 7  ̂ t 2 =  2, 2 < 3 * 2, thus a partition does not exist by Theorem

3.5. Note, that a single balanced group can be constructed in this case, but a partition into 

three groups cannot.
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G eneral Case w ith  Fixed and Variable A ttributes

In subsection 3.3.1 and Theorem 3.3 we considered the case when all attributes are of 

the same fixed type (*, i) for some i and showed that there exists a threshold j t +  2 such 

that if the number of attributes of type (i , i) exceeds it, then balanced partitions may not 

exist. Then in Section 3.3.1 and Theorem 3.4 we extended this result by showing balanced 

partition may not exist when this threshold is exceeded by a combination of two fixed 

attributes. Next we show that this result extends to a combination of fixed and variable 

attributes.

Suppose that an instance has attributes of two types, (i,i +  1) and That is

for attribute of the latter type mirij — maxj  =  i, while for the former mirij = i and 

maxj — i +  1. Denote such equivalence class for some k, G as E.

T h eo rem  3.6 I f  >  ji +  1, G > i and is divisible by ji +  1 and j i+\ < ji then there 

exists an instance in E  that cannot be partitioned into G balanced groups.

P ro o f. If the claim is true for — ji + 1 and fp,i+i) =  1 then it is also true for t ^  > ji + 1 

and t(iti+1) >  1 by Observation 1. Thus assume = ji + 1, t(i,i+i) =  1 and G = ji +  1; 

an extension to G divisible by ji +  1 is straightforward. Let denote the column sum

for attribute of type (i, i +  1).

Create attribute matrix A  by adding i blocks D(ji + 2, + 2.j l Jr \) and c^+ i) — Gi rows

with one in the first coordinate and zeros otherwise (we refer to such rows as (1, 0 , ...0). 

Augment A  by kG — C ( > 0 all-zero rows. By construction A  is an attribute matrix of 

an instance in E.

Suppose a balanced partition of E  exists. Then since by construction there are i < G 

rows of type 1, there must exist a group that does not contain a row of type 1. By the 

same argument as in the proof of Theorem 3.3, in order to be balanced with respect to
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the attributes of type (z,i) such a group must contain equal number of copies of rows of 

each of the types 2, ...,ji +  2 (ji +  1 types in total). Thus with respect to the attribute 

of type (i,i  +  1) it has column sum divisible by j t +  1. By conditions of the Theorem 

ji+i <  ji < ji + 1 and therefore such a group is not balanced. ■

In words, a BMASP problem that contains a mixture of attributes of fixed and variable 

types could be as hard as its fixed ’subproblem’. Indeed, by comparing Theorems 3.4 and 

3.6 substituting some fixed attributes with variable, but keeping ’enough’ fixed attributes 

in place still allows us to characterize the cases when balanced partitions do not exist.

Next we present an alternative approach to searching for BMASP instances in which 

balanced partitions do not exist.

3.3.2 Cover P roblem  A pproach

Consider sub-class ce in equivalence class E(G, k, T, {t(h^ } ) -  Suppose that balance parti

tions exist in all instances in this sub-class. How many attributes of a certain type can be 

added before there would exist an instance for which a balanced partition does not exist? 

Likewise, in the opposite case when a sub-class contains an instance for which balanced 

partition does not exist, by how much do we have to decrease the number of attributes 

of a given type in order to guarantee that all instances in the resulting subclass can be 

partitioned into balanced groups?

In this subsection we suggest an approach to answer these questions numerically. It 

further allows us to obtain a theoretical result that compares the existence of groups in the 

classes with fixed and variable attributes.

Observe tha t an attribute (column in A) with column sum Cj is a binary column-vector 

of length kG  with Cj ones and kG  — Cj zeros. For instance, attribute ’’Gender” in the 

example from Table 3.1 is a binary vector (1,1,0,0). In a similar way, a group is a binary
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column-vector of length kG with k ones and kG — k zeros. For example, group ’’Monica

and Rachel” is a binary vector (0,0,1,1). Since all these vectors are of length kG  we use

”x —vector” to denote a binary vector of length kG  with x  ones and kG  — x  zeros. That is 

an attribute is an C j — vector and a group is a A;—vector.

For given Cj  let U Cj be the set of all non-identical attribute C j — vectors; clearly, there are 

|U| =  (k°) (”kG  choose c f )  elements in U Cj. Note that if an instance in E (G, k, T, {t^h^ } )  

has an attribute with column sum Cj  then the corresponding C j — vector is a member of U Cj. 

Similarly, let V  be the set of all possible groups of k objects from the available kG objects; 

there are |V| =  (fĉ )  non-identical group A;—vectors.

We say tha t an attribute vector u G U Cj of an attribute j  of type (h. h) covers group 

vector v  if

uTv  < h — 1

or

ur v > h +  1

that is too many or too few objects from group v contain attribute j  and thus group v  is 

not balanced with respect to this attribute.

D efinition 2 Let {bu(Cj)v} be a cover matrix, with elements bu(Cj)v =  1 i f  attribute u G UCj 

with column sum Cj covers group v  G V, and bu(Cj)v = 0 otherwise.

To visualize the concept of cover matrix consider the example from Table 3.1. In this 

case iV =  4 ,G  = 2,k  =  2 and Cj  =  2 for j  =  1,2,3. There are six group vectors: (1,1,0,0), 

(1, 0 , 1, 0), (1, 0 , 0 , 1), (0 , 1, 0 , 1) and (0 , 0 , 1, 1); likewise there are the same six attribute 

vectors. Table 3.5 (a) presents all possible attribute vectors (there are more attributes than 

tha t presented in the actual example in Table 3.1). Consider group vector #1 , (1,1,0,0), 

and attribute vectors #  1 and 2, (1,1,0,0) and (1,0,1,0) respectively. In the first case
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a ij Attribute vectors

Objects (1,1,0,0) (1,0,1,0) (1,0,0,1) (0,1,1,0) (0,1,0,1) (0,0,1,1)

1 1 1 1 0 0 0

2 1 0 0 1 1 0

3 0 1 0 1 0 1

4 0 0 1 0 1 1
(a)

b u C j V Attribute vectors

Group vectors (1,1,0,0) (1,0,1,0) (1,0,0,1) (0,1,1,0) (0,1,0,1) (0,0,1,1)

(1,1,0,0) 1 0 0 0 0 1

(1,0,1,0) 0 1 0 0 1 0

(1,0,0,1) 0 0 1 1 0 0

(0,1,1,0) 0 0 1 1 0 0

(0,1,0,1) 0 1 0 0 1 0

(0,0,1,1) 1 0 0 0 0 1

(b)

Table 3.5: A ttribute vectors (a) and cover matrix (b) for ’Friends’ example from Table 3.1.

fri,(2),i =  1 because (1 ,1 ,0 ,0)T x (1,1 ,0 ,0 ) =  2 > 1 (in words, group ’’Ross and Chandler” 

is not balanced with respect to attribute ’’Gender” because they are both males). In the 

second case &i,(2),2 =  0 because (1 ,1 ,0 ,0)r  x (1,0,1,0) =  1 (in words, group ’’Ross and 

Chandler” is balanced because with respect to attribute ’’Siblings”). Refer to Table 3.5 (b) 

for the cover matrix {6u(Cj)w}; note that attributes in this example have the same cj value 

and thus index (2) is omitted.

Let x UCj =  1 if attribute u 6 with column sum Cj is selected from U Cj- and xUCj = 0 

otherwise.

For a given sub-class ce in equivalence class E(G, k, T, {t(h^  }) let c 6 eg be a column 

sum of some column. Note that there may be several columns with column sum c. Let

E, ce) be the smallest number of attributes with column sum c adding which and keeping 

the number and column sums of the other attributes (which sum is not c) unchanged, results 

in an instance for which a single balanced group cannot be constructed. Note that even
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though we are interested in the existence of balanced partitions into G groups, such a

partition obviously cannot exist in the cases when even a single groups does not exist.

Therefore such a single-group subproblem is of interest as well.

Z \ (E, ce) can be found by solving the following set cover problem.

(E f(E ,cE))

min E E  %UCj (3’4)
C jG c u£UCj

subject to

y y K { c > 1 for an v e  v  (3.5)
Cj€c ueU Cj

y  Xucj = tCj for all cj € cE, c3 ^  c (3.6)
wef/oj

%UCj £ {Oj 1}

where tx is the number of attributes with Cj =  x.

If Z f(E ,cE) > tc then a single balanced group can be constructed in all instances in 

sub-class cE in equivalence class E (G ,/c, T, { t^ ^ }). Otherwise, let X* = {JCj&{u \xuc.j = 

l , u  € U Cj} be a set of binary column-vectors that are selected in the optimal solution. 

Construct matrix A  by including the corresponding X* selected attribute column-vectors. 

By definition A  is the attribute matrix of an instance in sub-class cE in E(G, k, T, {f,(h 

for which a balanced group cannot be created.

Table 3.6 presents Z\  values obtained by solving the cover problem Z{{E, cE) for both 

the cases with fixed and variable attribute types for G = 2 and various k , Cj combinations 

(all attributes have equal Cj values). It is easy to see that, as suggested by Theorem 3.6, 

attributes of variable type indeed require substantially more columns in order to ensure 

tha t groups do not exist, e.g. for k = 6 , as little as 3 attributes of type (1,1) can prohibit 

the existence of balanced groups^, while we need at least 7 attributes of type (1,2).

T n  fact, we established this result analytically in Theorem 3.3
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C3
2 3 4 5 6 7

Type (1.1) (1.2) (2,2) (2,3) (3,3) (3,4)

k=3 3 10

k =4 3 7 4

k =5 3 7 3 7

k =6 3 7 4 7 3

k =7 3 7 4 10 3 11

Table 3.6: Z^3(E, ce) values for G = 2, k =  3, ...7 and c3 =  2 , ...7 (all attributes have the 

same Cj value).

Does this observation imply that a BMASP problem with variable attributes is nec

essarily easier than that with fixed? Next we show that this in indeed the case for some 

sub-classes.

T h eo rem  3.7 Consider sub-class c in the equivalence class E(G,k,  T,{t^h^ } ) ,  in which 

there exists an attribute (column) j ,  of variable type (i,i +  1) G T  such that Cj =  iG +  1. 

Let E 1 and c1 be the equivalence class and sub-class obtained from E  by substituting j  with 

an attribute (column) of type (i,i).

Then Z{{E,c) > Z \{E x,cx).

P ro o f. Let A  be the attribute matrix of an instance in sub-class c in the equivalence 

class E(G, k, T , {t^h /^}). For some row r  such that arj =  1, construct matrix A 1 such that 

aL =  0 and apq =  apq otherwise. That is, A  and A 1 are identical, except for element (r,j).  

By construction, A 1 is an attribute matrix of an instance in sub-class c1 in E1 .

Consider two problems of covering group vectors in E and E 1 by only the attributes 

(columns) from A  and A 1 respectively. By construction group vectors in both classes are 

identical and so are column vectors except for column j .  Therefore, £>„(.)„ =  blw^ v for all 

column vectors u — w, u ,w  j  and group vectors v, where {&«(>} and {6^.^,} be the 

corresponding cover matrices.
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In column j  observe that for an instance in E (with attribute matrix A), group vectors 

are covered by a iG + 1—vector (we refer to it as u), while for an instance in E 1 with 

attribute matrix A 1, by a iG—vector (we refer to it as w) with the same components equal 

1, except for component r.

Next we show that bj(iG+i)v <  b)(iG)V- that is, if a group vector is covered in an instance 

with attribute matrix A  then it is also covered in an instance with matrix A 1. Intuitively 

this happens because in the former case a balanced group could contain either mirij or 

mirij +  1 =  maxj  of attribute j ,  but in the latter minj = maxj.

Formally, let v(r) denote the r th component of group vector v (recall r  by definition is 

the index of the row in which in column j  we substituted 1 by 0). Each group vector v can 

be of either of the two types:

v ( r ) = 0  Then by construction uTv = wTv. Hence:

•  if uTv < i  -  1 then bj{iG+i)v = b){iG]v =  1;

•  if uTv = i then bj(iG+i)v = blj[iG)v = 0 ;

•  if uTv = i +  1 then bj{iG+i)v =  0 <  b) ( i G ) v  - ! ;

•  if uTv > i +  2 then bj{iG+1)v = blj{iG)v = 1.

v ( r ) = l  Then by construction uTv = wTv +  1. Hence:

• if uTv < i — 1 then wTv < i — 2 and so bj(iG+i)v =  ĵ(iG)v =

•  if uTv = i then wTv =  i — 1 and so bj(iG+i)v =  0 <  b^iĜ v — 0 ;

•  if uTv = i +  1 then wTv = i and so bj^G+i)v — b j ^ v — 0 ;

•  if uTv > i + 2 then wTv > i + 1 and so bj^G+i)v =  b^iĜ v — 1.

Therefore from (3.5) and (3.6) the feasible region for the cover problem representation 

of the instance in E 1 (with attribute matrix A 1) is contained in the feasible region for E
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(with attribute matrix A ), and hence by the principle of optimality Z£(E, c) > Z i ( E \ c ' ) .

■

By considering a similar argument, Theorem 3.7 can be extended to equivalence classes 

with variable attributes with Cj = i'G — 1. We summarize it in the following corollary:

C o ro lla ry  3.1 Consider sub-class c in the equivalence class E(G,k,  T, in which

there exists an attribute (column) j , of variable type ( i , i+ 1) 6  T  such thatcj = {i+l)G — \. 

Let i f  and c2 be the equivalence class and sub-class obtained from E  by substituting j  with 

an attribute (column) of type (i +  1, i +  1).

Then Z{{E,c)  > Z f ( ^ , c 2).

For G =  2,3 for all variable attributes Cj = minjG  +  1 or Cj = maxjG — 1. Therefore 

BMASP problem with variable attributes in these cases is always ’easier’. However, for 

G > 4 there exist variable attributes with Cj—values that do not satisfy conditions of 

Theorem 3.7 and Corollary 3.1, e.g. when Cj — iG +  2, and therefore we could not prove 

that BMASP problems with variable attributes are necessarily easier for such G. This is 

because for small G , (i.e. under the conditions of Theorem 3.7 and Corollary 3.1) all groups 

in the instance with a fixed attribute can be covered by modifying the attribute matrix of 

an instance with variable attribute (by changing some 1 to 0). For large G such modified 

attribute vectors may not cover all groups; however, it could very well be that some other 

C' < Zf(E,c)  attributes would cover all groups. For example, for k = 3 and G =  4, 5 and 

equivalence classes where all attributes have equal C j — values we established numerically 

that the number of attributes of a variable type required to cover all groups is always larger 

than the number of the corresponding fixed attributes; see Table 3.7. This was the case in 

all our numerical experiments and therefore we conjecture that such a property holds for 

all Cj values.

To conclude the worst-case analysis we apply our results to an example with k = 6 ,
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Z f(E ,c ) c

2 3 4 5 6 7

G =4 30 11 3 8 9

lOIIO

49 18 12 4 7 7

Table 3.7: 5ff(E, c) values for G = 4, 5, k =  3 and c = 2, ...7 (all attributes have the same 

Cj values).

which is most representative of the MBA study groups problem that motivated our work.

3.3.3 Exam ple: equivalence classes w ith  k  =  6

In this Section we illustrate our findings by considering several equivalence classes with 

k — 6 . Note, that in light of Assumption 1 it is sufficient to consider only the classes with 

attributes of types (h , h) with h <  3. We further restrict the example to the case with G =  2 

whenever the results are obtained numerically. Therefore we do not consider attributes of 

type (0 ,1); for G — 2 such an attribute has Cj = 1 and hence it does not influence the 

existence of balanced groups. Ten illustrative equivalence classes are presented in Table 

3.8.

Classes 1-5 contain only fixed attributes. Class 1 contains too many attributes of a 

single type, and thus groups do not exist with respect to this attribute alone by Theorem

3.3. Classes 2 and 3 contain less than the critical number of attributes of each type, but 

their combination is such that groups do not exist by Theorems 3.4 and 3.5 respectively. 

Classes 4 and 5 illustrate the importance of the combination of different attributes; indeed, 

the total number of attributes is the same in the classes 1,2,4 and 5, yet in some classes 

balanced partition is guaranteed to exist while in others it is not.

Classes 6-10 contain both fixed and variable attributes. Class 6 illustrates the extension 

of the block-building concept of Theorems 3.3 - 3.5 to the classes with variable attributes. 

Class 7 illustrates the covering result of Theorem 3.7. Finally, classes 8-10 illustrate how
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Eq. class * ( 1 . 1 ) * ( 2 , 2 ) * ( 3, 3) * ( 1 , 2 ) * ( 2, 3) Must partition exist? Reason

E i 3 0 0 0 0 No Theorem 3.3

E 2 1 2 0 0 0 No Theorem 3.4

E 3 0 2 2 0 0 No Theorem 3.5

e 4 1 1 1 0 0 Yes Z 1( 3 ’ 3 ) ( E 4 , c ) = 2

e 5 2 1 0 0 0 Yes Z 1( 2 ’ 2 ) ( E 5 , c ) = 2

E g 0 3 0 0 1 No Theorem 3.6

e 7 2 0 0 1 0 No Theorem 3.7

E 8 1 0 0 5 0 Yes Z j 1 , 2 ) ( E 8 , c )  =  6

E g 1 1 0 3 0 No Z 1( 1’ 2) ( E 9 , c ) = 3

E 1 0 1 0 1 3 0 Yes Z 1( 1’2) ( E 10, c ) = 4

Table 3.8: The existence of balanced partitions for different equivalence classes with k =  6. 

In classes 4,5,8 ,9 and 10 G =  2, in classes 1 and 7 G > 3, otherwise G > 4.

different combinations of fixed and variable attributes influence the existence of balanced 

partitions when the total number of attribute is the same (similar to Classes 4 and 5 for 

only fixed attributes).

We note tha t due to the large dimensionality of the covering problems, we were unable 

to solve similar examples for larger G. However, as the discussion of the probabilistic 

analysis (below) shows, such probabilities very quickly stabilize for G <  5, thus, we believe 

that the qualitative conclusions of this example hold for all G.

3.4 Probabilistic Analysis

From the preceding discussion we know that there exist equivalence classes that contain 

instances which cannot be partitioned into balanced groups. However, such instances may 

be relatively rare within the corresponding equivalence class. This leads to the following 

questions: for a given equivalence class for which it cannot be guaranteed that a balanced 

partition exists in all its instances, how practical is the BMASP approach to group balanc

ing? The answer depends on the probability that a partition exists in a randomly selected
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instance. In this Section we estimate a probability that an arbitrary instance in a given 

class can be partitioned into balanced groups.

We describe three complementary approaches. First, we present a general network- 

based representation of group creation problem, and use it to estimate the probability that 

a balanced partition exists through numerical simulations. These simulations are based on 

the covering representation of the problem of creating one group described in Section 3.3.2. 

Our second approach is a distribution-free upper bound, where to obtain a rigorous bound 

we note that the distribution of the number of groups that exist is difficult to find and so we 

build our analysis not relying on knowing such a distribution. Finally our third approach 

presents a lower bound, based on empirically estimating a fraction of instances for which a 

balanced partition has been found by solving BMAPS integer programs numerically.

3.4.1 N etw ork R epresentation

Consider a given subclass ce in equivalence class E(G, k, T, We view the problem

of creating balanced groups as a sequential process. We create one balanced group and 

delete the objects in this group. Then we create the second group from the remaining 

objects, delete its objects, and continue doing so until, hopefully, all objects are assigned 

to balanced groups, i.e., a balanced partition is constructed. As we discuss next, there are 

many different kinds of groups and they may not always exist. Therefore in constructing 

groups sequentially we must account for both these issues. It is convenient to do so using 

the following random network; an example if provided on Figure 3.1.

The nodes of the network correspond to the different subproblems that occur in con

structing groups sequentially. The nodes are grouped into stages, where stage g =  G,G — 

1,..., 2,1, signifies the number of groups yet to be created. Each node at stage g represents 

a subclass that contains all instances that can be obtained if the objects that form the first
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G — g balanced groups of certain types (see below) created at stages G, G — 1, ...g +  1 are 

deleted from the sets of objects of all instances in c e - At stage G there is only a single 

node representing all instances in c e - At other stages there may be multiple nodes. Let 

c(d) = ( ci(fi,)i c2 (g), ■■■, cc(g)} denote a node at stage g. Thus, the node is the vector of 

column sums at stage g (the amounts of each attribute that must be used in creating the 

last g groups), i.e., a sub-class. We set c(G) =  c e - T o construct all nodes that may arise at 

different stages for a given ce, let l3(g) and Uj(g), j  — 1,..., C  denote the lower and upper 

bounds such tha t given cj(G), mirij, maxj  at stage g, c]{g) £ [lj(g),Uj(g)]. Let qj is the 

solution to diophantine equation qjrairij +  (G — qj)maxj =  Cj(G), i.e. a balanced partition 

with respect to attribute j  consists of qj groups with mirij of this attribute and G — qj 

groups with maxj.  Then lj(g) =  c3 — min[G' — g.G — qj]maxj — max[^ — g, 0]rmn3 and 

Uj{g) — Cj — min[G — g, qj]mirij — max[G — g — qj, 0]maxj. Therefore, the nodes at stage 

g can be obtained by enumerating all permutations of c3(g) £ [l3(g), u3(g)\ values for all

j  =  i , . . . , c .

The arcs of the network correspond to group creation and represent a transition from 

an instance at stage g to an instance at stage g — 1. To describe these transitions we say 

that a group I  is of type f  if a binary representation of integer / ,  a binary vector of length 

C, B in f  = { B i n f ( l ) , B i n f ( C ) } ,  is such that Bin f ( j )  — 0 if group I  has minj  objects 

that possess attribute j  and B in f ( j )  =  1 if I  possesses maxj  such objects. For example, a 

group tha t contains mirij objects with all attributes j  = 1, 2 , ..., C  has B in f  =  {0 , 0 , ...,0} 

and thus is of type /  =  0. There are 0(2°)  group types and there is one arc exiting every 

node per each type that is balanced at this node. Observe that not all group types that are 

balanced at node Ce are balanced at all other nodes; for example, if for some attribute j  and 

stage g such tha t qj < G — g, all groups that were constructed at stages G, G — 1, ...G — g 

had minj  of objects with attribute j ,  then the remaining g groups must all have maxj  

objects with attribute j ,  i.e., a group with min3 such objects is not balanced at stages 

g,g — 1, ...1, see node (3 ,6) on Figure 3.1. We say that an arc is of type /  if it corresponds
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to a group of this type.

Let cf (g) be the end node at stage g — 1 of the arc of type /  that exists node c(g) at 

stage g. In words, because nodes represent subclasses, cf (g) is a subclass that contains all 

instances that remain after the objects comprising a group of type /  are removed from any 

instance in c(g). Note, that any group of type /  exiting a given c(g) points to the same end 

node cf (g): in realistic subclasses there are typically thousands of different combinations of 

objects that lead to a group of a given type. Binary representation for a group of type /  

implies:

cj (9) =  Cj(g) -  {Binf (j)maxj + (1 -  B i n f ^ m i u j )  (3.7)

for all j  = 1 , . . . ,C,g  = G, ...,2.

Note, tha t for a given instance in c(g) it may not be possible to create a balanced 

group that would result in the remaining problem belonging to cf (g) -  such a transition 

may be possible from only some of the instances in c(g). Therefore, for the arc of type / ,  

(c(g),cf(g)^  , we define a quantity, P(g, / ,  c(g)). measuring the fraction of instances in c(g) 

in which a balanced group r esulting in such a transition exists -  the probability that arc 

(balanced group) of type / ,  exists at node (subclass) c(g) at stage g.

Figure 3.1 depicts an example of such a transition network. There are G =  4 groups 

and C = 2 attributes with c(4) =  {5,9}, i.e., mini  =  l ,m a x i  =  2 and min 2 = 2, m ax2 =  3. 

The first group (at stage 4), could be either of four types, 0,1,2 or 3. In our notation, for 

example, for a group of type 0, B in 0 = (0,0), meaning that it contains mini  =  1 object 

with attribute 1 and =  2 objects with attribute 2. Thus to associate a physical

meaning with this type on the figure we mark it as (1, 2) -  see the upper leftmost arc 

on the Figure. Suppose a group of type 0 is created at node (5,9); then from (3.7), 

c<j>(4) =  5 -  (0 * 2 +  (1 -  0) * 1) =  4 and c§(4) =  9 -  (0 * 3 +  (1 -  0) * 2) =  7. Therefore 

by creating a group of type 0 at node (5,9) at stage 4 we transition to the node (4, 7) at 

stage 3, meaning that 4 objects with attribute 1 and 7 with attribute 2 should be used in
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g=4

n(4,6, (5,9))/

n(l,6,(2,3))=l

(2,3)

k(I.6,(2.2))=1

(2,2 )

(5,9)fC 
/

n(2,6.(2,5))

k(3,6, (4,6)) n(2,6,(3,4))

P ( 2 .m ,4 k .

k(3,6,(3,7)#£' \

„ (3.7) (3 ,5 r -S i

n(2t6,(2.4))n (3,6,(3,6))

P(2,0,(2,4))P ( 3 ,0.(3,6))

n(!,6,(l,3))=I

■{1,3)

k ( l.6 .( l ,2))=l  

( 1,2 )

Figure 3.1: Transition network for C = 2,G = 4, cb =  (5 ,9). The nodes are vectors c(g), the marks 

on the arcs denote the group types and probabilities that such type exist. Probabilities on nodes are the 

probabilities of reaching any node at stage 1. Exit arcs at nodes represent the cases when no groups can 

be created.

the remaining 3 groups to be constructed at stages 3,2 and 1.

Let 7r(<7, k, c(g)) be the probability that an arbitrary instance in subclass c(g) can be 

partitioned into g groups of size k. For notational convenience we denote the probabilities 

on arcs and nodes as the P — and i t —  probabilities respectively.

W ith this, being at node c(g) with arcs of types /  =  0,1, ...2C — 1 with probabili

ties P(g, f ,  c(g)) on these arcs, leading to nodes cJ(g) at stage g — 1 with probabilities 

tx(g — 1, k, cf (<?)) of building the remaining g — 1 groups from these nodes, n(g. k, c(g)) is
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determined by the following recursion:
2 °  — l

n(s, k , c(g)) = p (9' f '  c(9))n(9 -  1, k, cf(g))
f =o

/ - i  ___  ____

x m 1 -  p (9, k > c*(^))} (3-8)
i = 0

To illustrate recursion (3.8) suppose that in the example on Figure 3.1, P(4,0, (5,9)) =  

0.8, P (4 ,2, (5,9)) =  0.3, P (4 ,l,(5 ,9 ))  =  P (4 ,3, (5,9)) =  0 and tt(3, 6 , (4,7)) =  0.6, 

7r(3 , 6 , (4 ,6)) =  0.1, 7r(3 , 6 , (3, 7)) =  0.5, 7r(3, 6 , (3 ,6)) =  0.5. In words, two upper arcs 

leaving node (5,9) have P —probabilities 0.8 and 0.3 and the corresponding nodes have 

7T—probabilities 0.6 and 0.1; other arcs have zero P —probabilities, other n —probabilities 

are 0.5. Then 7t(4 , 6 , (5,9)) =  0.8 * 0.6 +  0 * 0.5 * (1 — 0.8 * 0.6) +  0.3 * 0.1 * (1 — 0 * 0.5) * 

(1 -  0.8 * 0.6) +  0 * 0.5 * (1 -  0.3 * 0.1) * (1 -  0 * 0.5) * (1 -  0.8 * 0.6) =  0.4956.

We refer to the n(G,k,c(G))  obtained by recursion (3.8) as the N-estimate (network 

estimate). Note that while in (3.8) we evaluate the nodes at stage g — 1 in the order of our 

binary representation for / ,  (3.7), any other numbering of nodes would lead to the same 

result. This follows from observing that the probability of forming g groups at some node 

c(g) is 1-probability that groups do not exist.

In order to follow recursion (3.8) we require the knowledge of P(g, / ,  c{g)) values, which 

are the probabilities that a group of type /  can be created in an arbitrary instance in 

subclass c(g) with some given number of objects per group, k. Next we discuss now to find 

such P —probabilities. We first clarify what we mean by an ‘arbitrary instance’.

A ssu m p tio n  2 An arbitrary BMASP instance in the sub-class ce in equivalence class 

E(G,k ,  T, {t(h ^} ) is obtained by sampling the corresponding number of attribute column- 

vectors with column sums Cj from the sets UCj uniformly at random (i.e., each column-vector 

in a given set has equal probability to appear) with replacement for each Cj £ ce-

That is, the arbitrary instance is not the one which has the entries of its attribute matrix
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are generated randomly; rather the columns of the attribute matrix are sampled at random 

with replacement from the corresponding sets of all such columns. In practical applications 

replacement may apply since correlated (identical, or negatively correlated, e.g., see Table 

3.5 (b)) column-vectors may arise.

W ith this assumption we can evaluate probability measure P(g, f,c(g)) .  We were not 

successful in deriving it analytically; its distribution seem to depend on complicated com

binatorial relationships between the column-vectors, and as a result, is does not reflect any 

standard parametric family (we discuss this issue in detail in subsection 3.4.3). In principle, 

one could use complete enumeration: create all instances in a given sub-class c(g) and then 

check all groups in the group-vector set V  of its equivalence class (recall that as defined in 

Section 3.3.2 V  is a set of all group-vectors in a given equivalence class). Then for each 

group type / ,  P(g, / ,  c(g)) would be given by the ratio of the number of instances in which 

there exists an uncovered group of type /  to the total number of instances in c(g). Unfor

tunately, such an approach is computationally prohibitive in effectively all cases of interest. 

For example, for A; =  6,g = 2, c(g) = {6 , 6 , 6}, there are (g2) =  924 group vectors and the 

same number attribute vectors. Thus there are (924) =  131054924 different instances that 

must be checked.

Alternative approach is to evaluate P(g, f,c(g))  values using simulation. To do so in 

each trial of the simulation we create a random BMASP instance as per assumption 2. 

Then we test all group-vectors in V  and determine whether in this instance there exists 

at least one group vector of type /  that is balanced (in light of the cover problem analogy 

from subsection 3.3.2, we could also say ‘not covered’ to mean being balanced in a given 

instance). If y denotes the number of such instances (where at least one uncovered group- 

vector exists) and z is the total number of simulation trials, then P(g, / ,  c(g)) ~  A

Since computational complexity of such a simulation depends largely on the size of set 

V, which is it can be used very effectively for small k,g. In particular, evaluating
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9 C
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 1 .98 .92 .85 .71 .58 .41 .31 .2 .12 .09 .03 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 .97 .94 .88 .78 .67 .44 .27 .11 .06 .04 .01 0 0 0 0 0 0
4 1 1 1 1 1 1 .99 .98 .97 .86 .66 .48 .28 .19 .12 .07 .05 .03 0 0 0 0
5 1 1 1 1 1 1 1 1 1 .99 .93 .78 .57 .29 .19 .07 .04 0 0 0 0 0
6 1 1 1 1 1 1 1 1 1 1 1 .96 .86 .65 .39 .24 .05 .02 0 0 0 0
7 1 1 1 1 1 1 1 1 1 1 1 1 .98 .77 .62 .4 .2 .1 .04 .03 .01 0

(m =  1)

9 C
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 1 1 .96 .8 .58 .3 .14 .09 .03 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 .99 .79 .39 .15 .03 .01 0 0 0 0 0 0 0 0 0 0 0
4 1 1 1 1 1 1 1 .92 .62 .34 .22 .06 .01 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 1 1 1 .95 .7 .42 .17 .1 .06 .02 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 1 1 .94 .66 .24 .12 .05 .02 .02 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 .99 .93 .52 .22 .09 .05 .03 0 0 0 0 0 0

(m =  2)

9 C
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

2 1 .97 .89 .72 .48 .25 .1 .06 .01 .01 .01 0 0 0 0 0 0 0 0 0 0 0

3 1 1 1 1 1 .95 .69 .29 .11 .03 .01 0 0 0 0 0 0 0 0 0 0 0

4 1 1 1 1 1 1 .99 .88 .47 .21 .08 .01 0 0 0 0 0 0 0 0 0 0

5 1 1 1 1 1 1 1 1 .82 .51 .21 .1 .07 .01 0 0 0 0 0 0 0 0

6 1 1 1 1 1 1 1 1 .99 .81 .42 .17 .06 .02 0 0 0 0 0 0 0 0

7 1 1 1 1 1 1 1 1 1 .97 .7 .34 .15 .06 .01 0 0 0 0 0 0 0

(m =  3)

Table 3.9: Estimates for P(g, -,c(g)) obtained by simulation for the equivalence classes 

where all attributes are of the same fixed type (i.e. c(g) =  {mg, m g , ...,m g } of length C) 

for m  =  1,2,3, g =  2,..., 7, C = A,..., 25 and k = 6 .

P(g, f ,  c(g)) for g =  2 ,3 ,4  is computationally inexpensive and quick for effectively any k of 

interest; thus we can run thousands of trials and obtain very accurate approximations of 

the underlying probability measure. For large k, g simulation cannot be used, since the size 

of the set of group-vectors, (fcfc9), grows exponentially in k,g. In our experiments it took 

approximately 24 hours to run 256 trials for the cases with k =  4, g = 10 and k = 6 , g =  7, 

which were the ’largest’ cases we considered in simulation.

Running such simulations we noticed that P-probabilities (for a given number of at-
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tributes of given types) are the largest when g is large. Table 3.9 presents P-values for the 

equivalence classes with identical fixed attributes (described in detail in the next subsec

tion), i.e. the type of the group is determined by the number of objects per group, m. For 

example, consider the case with m  =  1 and suppose we are interested in the probability 

tha t a partition exists in the equivalence class with g — 7 and C = 15 attributes. Then, at 

first stage for g = 7 the probability that one group exists is 100%, hence we transition to 

the stage with g = 6. Here the probability that one group exists is 96% and so we reach 

the stage with g =  5 with probability 96%. However, even if the process reaches stage 

with g = 2, this happens with probability «  10%, the last group almost never exists (3% 

probability).

Therefore, the probability that a partition exists is effectively determined by the P- 

values of the last stages (with small g). Since we can accurately approximate them 

through simulation, the possible inaccuracy of the estimates for large g has little effect 

on tt(G, k , c(G)).

Recognizing this we can choose some g such that all P(g, f , c (g )y s for g < g can be 

evaluated using simulation, and substitute P(g, f,c(g)) = 1 for all g > g. Then from (??) 

we obtain an estimate of the upper bound on ir(G, k, c(G)). We note that in our numerical 

experiments such assumption made virtually no difference for large g ; in effect, the proba

bility of creating a partition is determined by the P-values for small g. We illustrate this 

issue on examples in the following subsections, where we discuss some interesting observa

tions based on solving the recursion with simulated P —probabilities for different subclasses 

in certain equivalence classes. In particular, we discuss classes with only fixed attributes 

(both identical and not), as well as the classes with only variable attributes.
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3.4.2 P robabilities for th e equivalence classes w ith  fixed attributes

Equivalence classes with only fixed attributes are fundamentally simpler to analyze, because 

at each state there could exist a balanced group of only one type with mirij = maxj  for 

all j  =  1,2, ...,C . Correspondingly, the problem of ordering groups is non-existent and 

transition network is a path. Therefore, for notational convenience we omit group type

index, / ,  from P(g, / ,  c(g)). By substituting it into (??) and rearranging we obtain:

7r(G,k,c(G)) = P(G,c(G)) —
G - 2  (  i - 1 ' j

|  (1 -  P(G -  X n  ( P (G -  *> c(G = 0)) (3.9)
i= 1 I /= 0  J

where Cj(g) =  cj(G) — (G — g)mirij =  Cj(G) — (G — g)maxj ,  j  =  1,

Next we numerically estimate the probability that balanced partition exists for various 

equivalence classes. All computations are done in Mathematics on a 3Hz desktop PC. We 

first consider the case when all attributes are of the same type.

Probabilities for th e classes w ith  identical type fixed attributes

In this subsection we consider equivalence classes where in addition to being of the fixed 

types, all attributes are further assumed to be of the same type, m.  That is every group 

should contain m  objects that possess each of the C  attributes. Our goal is to examine how 

7r(G, /c, c(G)) is affected by the number of groups, G, the number of objects per group, k, 

density of attributes, m, and their number, C.

We first demonstrate that 7r’s very quickly stabilize in the number of groups, since in 

effect P  probabilities for large g do not influence the resulting 7r probability. This should 

not be surprising since as we argued, whenever for small g P-probability is close to 0, 7r 

is largely determined by it, and thus it does not matter what happens when g is large; 

conversely, when for small g P  is not close to 0, then for large g it is close to 1.
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Figure 3.2: Dem onstration that N-estimates for the probability that a balanced partition exists,

n ( G , k , m , C ) ,  converge in G  for all C.  In (a) rri =  1 we use simulation based P\  k =  6 in both cases.

In full agrement with this intuition, Figure 3.2 suggest that for the groups of size 6, the 

corresponding n values are virtually identical for G > 3 for any number of attributes. We 

note tha t these observations hold for different k, m.

We next study how ir depends on the size of the group, k, and relative attribute density, 

m /k .  Figure 3.3 presents the corresponding probabilities for different k and fixed m  =  1, 

figure (a), and for different m  such that m / k  =  const, figure (b).

Figure 3.3 (a) shows that the probability that groups exist increases with group size 

(for fixed m  =  1). We note this is rather different from the worst-case analysis, where the 

size of the group did not matter. At the same time, such result is supported by our other 

simulations, distribution-free and empirical bounds discussed below. There we see that 

probability decreases with an increases in m. Since an increase in the size of the group, 

k, is analogous to a decrease in the relative density k /m ,  we believe that these behaviors 

should be similar.

Three more observations are evident from Figure 3.3. First is that the increase in 

probability for different k could be substantial. For example, for C = 11 n(k — 4) ps 0
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Figure 3.3: N-estim ates for the probabilities that a balanced partition exists, 7r(5, k, m,  C) ,  for different 

k and m.  In (a) m  =  1 and in (b) m / k  =  0.5 - the largest possible m  for a given k.

while 7r(k = 7) ~  0.5. Second, the number of attributes that results in a certain probability 

that groups exist is approximately linear in group size when the density decreases, see 

(a). Further, it is also approximately linear when density is fixed, see (b). Such behavior 

suggests that what matters more to the existence of balanced partitions is not the number 

of objects per group that must possess a certain attribute, m, but rather the flexibility 

to include other objects in the group that do not possess this attribute. Such flexibility 

could be informally expressed by k — m,  which increases in k in both cases (a) and (b) 

and thus the probability increases. Further, since the increase in k — m  is linear in k, the 

approximately linear relationship in one case, (a), leads to a similar relationship in the 

other case, (b). We conjecture that these relationships can be established analytically, but 

have not been able to do so.

P robabilities for th e classes w ith  non-identical type fixed attributes

Next we compute the probabilities to construct balanced groups for the classes with non

identical type fixed attributes and discuss the differences and similarities to the case with
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q 60%

N umber of attributes, C Number of attributes, C Number of attributes, C

(a) (b) (c)

F ig u r e  3 .4: Comparing the N-estim ates for the probabilities that balanced partitions exist for k  =  6, G =  5 

for the case w ith C  identical attributes (a), and the case with different attributes, where C  — 2 attributes 

are of the same type, plus one attribute of the remaining two types (b), as well as the difference in the 

corresponding probabilities (identical minus different), (c).

identical attributes. We set k = 6 and G = 5 in our experiments because the case with 

k =  6 is most relevant for our motivating example of creating MBA study groups, and same 

as in the case with identical attributes we observed that the probabilities quickly converge 

in G.

First consider Figure 3.4. Figure (a) presents the cases where all C  attributes are of type 

m  =  1,2,3 respectively (from Section 3.4.2). Observe that for the same C  we observe that 

the probability that groups exist is lower for larger densities, m. Indeed, for the problem 

with 8 attributes, (C = 8) we have 7r =  0.741, 7r =  0.551 and 7r =  0.434 for m  =  1,2,3 

respectively. Similar probabilities for C = 12 are 0.161, 0.006 and 0.0009. This observation 

is quite intuitive: as more objects per group must possess certain properties, one must pick 

them with greater care since the same object must possess certain multiple attributes. This 

result contrasts with the worst-case bounds from Section 3.3.1, where only the divisibility 

of m  matters, not its value.

In Figure 3.4 (b) we plotted a nearly identical case, where C — 2 attributes are of the 

same type as in (a), plus there is one attribute of each of the remaining two types. While 

the figures look seemingly alike, the difference between these probabilities (identical minus
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N um ber of a ttrib u tes , C

a  2 &3

Pattern 1 1/31 4/31 16/31

Pattern 2 1/7 2/7 4/7

Pattern 3 1/3 1/3 1/3

Pattern 4 4/7 2/7 1/7

Pattern 5 16/31 4/31 1/31

Figure 3 .5: N-estim ates for the probabilities that balanced partitions exist, k  = 6 ,G =  5 for f* = ctiC, 

where cti values, i =  1 ,2 ,3  for each pattern (1 through 5) are given in the adjacent table.

non-identical) is significant; Figure 3.4 (c). For example, in (C — 2) — (1) — (1) case, 

substituting two attributes with m  = 1 with one attribute with m  = 2 and one with m  =  3 

could decrease the probability of constructing balanced groups by approximately 10 percent 

Similarly, substituting 2 attributes with m  = 3 by one with m  =  1 and one with m  =  2 

could increase the probability by 10 percent. Note also, that keeping the same attribute 

density ”on average”, i.e. substituting two attributes with m  =  2 with one with m  = 1 and 

one with m  =  3, (case (1) — (C — 2) — (1)), for some C  could lead to an increase (about 10 

percent) in the probability to construct balanced groups.

In our second experiment we test different compositions of the attributes, in particular 

those with many high density attributes and those with few. To do so, for a given total 

number of attributes, C, we design attribute patterns such that = Round(aiC), a% =  

1, * =  1, 2,3, where function Round(-) rounds a number to the nearest integer (recall that 

U is the number of attributes of fixed type (*,*)). We test five patterns; see Figure 3.5. In 

pattern 1 (pattern 5) the number of attributes with m  =  3 is four times larger (smaller) 

than tha t with m  = 2, which in turn is four times larger (smaller) than that with m  = 1. 

In pattern 2 (pattern 4) the same logic propagates but with twofold differences. Pattern 3
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represents the case with equal number of attributes of each type. Observe that the density 

of attributes decreases in pattern number, most attributes in pattern 1 are with m  = 3, 

while in pattern 5, with m  =  1.

For these patterns Figure 3.5 supports the initial observation that having attributes 

with small densities is less restrictive than having those with large densities. Furthermore, 

the difference could be very substantial: for example for C = 9, instance with pattern 1 

has a 40 percent probability of the existence of a balance partition, while the instance with 

pattern 5 has 95 percent probability. This is because in the instance with pattern 1 most 

attributes have high density (m =  3), while in pattern 5 most attributes have low density 

( m =  1).

Probabilities for th e classes w ith  variable attribute types

In this subsection we use transition networks to compute probability estimates for equiva

lence classes with variable attribute types, i.e. the classes when each group could contain 

m i r i j  or m a x j  = =  m i r i j  +  1 objects with each attribute j  =  1,2,..., C. We use our random 

network approach and estimate P-probabilities for g < 4 using simulations and otherwise 

we assume they equal one. We present n —probabilities for the case with G — 5, k =  6 in 

Figure 3.6. In this simulation we generate 100 subclasses containing C  attributes of the 

same class (*, i +  1), i  =  0,1,2, by sampling column sums, Cj,  uniformly at random from

[iG +  1, (i +  1 )G — 1].

Our main observation is that a balanced partition in an instance with variable attribute 

types are much more likely to exist than in an instance with fixed. For example, comparing 

Figures 3.6 and 3.4 (a) it is easy to see that for the same k, G in the equivalence classes 

with fixed types balanced partition is unlikely to exist for C  >ss 15, while in comparable 

instances in the classes with variable types groups nearly always exist.
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F ig u r e  3.6: N-estim ate for the probability that a balanced partition exists in the equivalence classes with 

attributes of variable types ( k  =  6, G  =  5 all C  attributes are of the same type with Cj  sampled uniformly 

at random from the corresponding range).

Another observation is that the differences in probabilities for different types of at

tributes are magnified to a greater extent. Indeed, while from 3.4 (a) instances in the class 

with attributes of type (1,1) are only somewhat more likely to be partitioned than instances 

with types (2,2) or (3,3), while from 3.6 the corresponding differences are very large. In 

particular, the class should contain in excess of a hundred of attributes of type (0,1) for the 

7T—probability to start to decrease; this decrease is also very slow (note the scale for large

CO-

In summary, we suggested a network-based recursive approach to estimate the prob

ability that a balanced partition can be constructed in an arbitrary instance in a given 

equivalence class and its subclass. We further demonstrated how this approach can be used 

in conjunction with simulation, and that a hybrid approach, where the transition proba

bilities for final stages are simulated, while the probabilities for earlier stages are assumed 

to be equal one, in practice leads to a rather tight (upper) bound. We note, however, that 

this estimate cannot be rigorously considered as an upper bound because it is based on 

estimating -P(<7, / ,  c(g))’s using simulation. Therefore next we present an approach that
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even though results in a less tight estimate, is a rigorous upper bound.

3.4.3 D istribution-free bound

Our key observation in this subsection is that a partition obviously cannot exist in an 

instance with fewer than G uncovered group-vectors. Therefore, the probability that there 

are fewer than G uncovered group-vectors is a lower bound on the probability that a 

partition does not exist, and hence its complement is an upper bound for 7t ( G ,  k, ce). 

Below we discuss how to estimate such bound analytically.

Observe that Assumption 2 (sampling with replacement), implies that in an arbitrary 

instance, the probability that a column-vector covers an arbitrary group-vector is indepen

dent of whether this group-vector has already been covered by other attribute vectors. As a 

result, we can easily determine the probability that an arbitrary group-vector is covered as 

well as the expected number of covered group-vectors. Note, however, that the probability 

tha t an arbitrary group is covered is not independent of whether other group vectors have 

already been covered by a given attribute vector. Therefore, the distribution of the number 

of covered group vectors is not trivial to determine.

Let Yce be the random variable representing the number of group-vectors covered by the 

attribute vectors in an arbitrary instance in sub-class ce in equivalence class E(G, k, T , {t^h ,/>)})•

We first evaluate the distribution of Y7.E through simulation. We note that this dis

tribution is ’very uneven’, i.e. only relatively few values occur with non-zero frequencies, 

moreover these values are interspersed with intervals of zero mass. For example, in the 

equivalence class with k = 4, G = 2 ,C  = 2 ,m  = 1 (both attributes have Cj = 2) the total 

number of group vectors is 70, 30 of which are covered by any single attribute column vector 

alone (we discuss this in detail next). Thus values from 30 to 70 could have non-zero mass, 

i.e. Y  £ [30,70]. However, through simulation we observed that Y  £ {30,46,50} and all
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Figure 3.7: Distribution of the number of covered group vectors in the equivalence class with k = 6, G  =  

5 ,77i =  1,(7 =  4 (all attributes are of the same fixed type). Total number of group vectors is 574191.

other values have zero frequencies. To confirm this observation we ran 10000 simulations 

for this equivalence class, but it did not change the result. Another example is presented 

on Figure 3.7 for the equivalence class with k = 6, G = 5 and cj? =  {5,5,5,5}. By the 

same logic as we obtained 30 and 70 above it could be verified that in this equivalence class 

Y  G [328125,593775]. However, again, there are only 88 values (out of 265650) that have 

non-zero frequencies, some of which are very likely (7.8% mass falls on 565600 group-vectors 

to be covered).

We believe that such unevenness is caused by the complicated combinatorial relation

ships between the column-vectors, which we have not been able to characterize in a general 

case. As a result the distribution of YcE cannot be estimated by a standard parametric 

distribution family, because any such family would assign a positive probability on many 

Y —values for which the actual probability is zero due to the unevenness. Therefore we 

develop a distribution-free bound.

Observe that we can always renumber objects such that any given attribute Cj—vector 

becomes a vector with first Cj components equal one and the remaining components equal 

zero. Therefore, for a given Cj, each attribute vector covers the same number of group
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vectors.

Let H(G, k , cj) be the number of group A;—vectors (from set V ) covered by the attribute 

Cj—vector in an instance with G groups. To compute H, consider an attribute vector 

(1,1, ...1,0,0, ...0) with ones in the first Cj  components and zeros otherwise. By counting 

the number of group-vectors that contain 0, 1, 2, ... mirij — 1, maxj  +  1, ...k elements from 

1, 2, ...Cj we obtain:

and therefore the probability that an arbitrary C j — vector covers an arbitrary group 

vector equals:

Pl (G,k ,c l ) = H(G ' * ’C’ ) . (3.11)

where for notational convenience we let K  = (kf f ) .

Thus for C  =  1, i.e. when ce =  {c} for some c, Yje =  H (G ,k ,c ) and is not random. 

However, for C > 2, F5e could attain different values, and as we argued its distribution is 

hard to find analytically. At the same time, E[Yce] is easy to find as we show next.

Let PcE denote the the probability that at least one attribute vector in an arbitrary

instance in subclass ce =  (c(l), ...c(C)} covers an arbitrary group vector in equivalence class 

E. Since Assumption 2 implies that attribute vectors cover group vectors independently*

c  i - 1

^ = e  p i(G ’k’ cw ) n  t1 -  p i(G’ cw )i * (3-12)
i = 1 j = 1

Let y |E be the random variable representing whether group vector i = 1,..., K  is covered 

 ̂For notational convenience we assume n  ■=! f U )  =  i-
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in an arbitrary instance in ce- Then its distribution is given by:

1, with probability P Ê>
y-cE = (3.13)

0, with probability 1 — PcE.

W ith these, since the expectation of a sum of random variables (not necessarily inde

pendent) equals to the sum of expectations (e.g. see Proposition 2.4 (a) in Knight 2000), 

upon noting that from (3.11) H  =  P1K  we obtain
K  K

spy = £[E4] = E £i4] = F®;f <3-14)
i—1 i = 1

C  i - 1

= E  "(G. M*)) f l I1- p‘(G, Mi))]
i = l  j = 1

Observe tha t K  — Y Te  represents the number of uncovered group vectors. If K  — Y T:e  <

G — 1 then a balanced partition clearly cannot exist. Therefore:

Tr(G,k,cE) < l - P r o b ( K - Y ZE < G -  1) (3.15)

Note tha t the reverse is not necessarily true, since not every set of G group vectors 

forms a valid partition.

Next we provide a distribution-free bound for the probability that K  — YcE < G — 1.

T h eo rem  3.8 In an arbitrary instance in sub-class Ce  in equivalence class E(G, k, T, {t(h , h ) } )

Prob(K - Y - Ce < G -  1) >  E \Yze] + g ~ K ' (3.16)
Cj

P ro o f. By the definition of the expected value:
K - G  K

E [Y -Ce] = Y . Prob{y ^ = y ) y +  E  Prob{Y-CE= y ) y
y —0 y = K - G + 1

K - G  K

< (.K - G ) Y J Prob(Y-CE= y )  + K  £  Prob(Y^E -  y)
y = 0 y = K - G + 1

K - G

=  K - G J 2  Prob(YcE = y )  = K - G {  1 -  Prob{Y-CE > K - G +  1)).
y = o
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Equivalence class 95% 50 % 5 %

Identical fixed with m  =  1, type (1,1) 14 16 19

Identical fixed with m  =  2, type (2,2) 11 13 17

Identical fixed with m  =  3, type (3,3) 11 12 14

Equal number of fixed with m  =  1,2, types (1,1) and (2,2) 12 14 16

Equal number of fixed with m  — 1 ,3 , types (1,1) and (3,3) 12 14 16

Equal number of fixed with m  =  2 ,3 , types (2,2) and (3,3) 12 14 14*

Equal number of fixed with m  =  1 ,2 ,3 , types (1,1), (2,2) and (3,3) 15 15* 18

Same number of variable with c:l =  3, type (0,1) 120 126 150

Same number of variable with c3 =  G +  3, type (1,2) 33 35 42

Same number of variable with Cj =  2G  +  3, type (2,3) 27 28 33

Table 3.10: Critical numbers, cj, for probability thresholds of 95,50 and 5 percent for 

different equivalence classes with k = 6, G = 5. Values with asterisk represent the cases 

where the probability instantaneously drops below the next threshold thus not allowing us 

to differentiate between the two adjacent thresholds.

The claim follows by rearranging the terms in the inequality above. ■

Thus, when K  — -E[Fee] <  G — 1, we can establish an upper bound on the probability 

tha t a balanced partition exists. For example:

C o ro lla ry  3.2 I f  K  — E\Y-Ce\ < G j 2 then tt(G, k ,cE) < 50%.

In particular, since from (3.14) the expected number of covered group vectors increases in 

the total number of attributes, C, (hence the number of uncovered group vectors decreases), 

for attributes with a given c3 and for any probability threshold (e.g. 50%), there exists a 

’critical number’ of such attributes (in addition to the other attributes contained in ce), cj, 

beyond which the probability that a partition exists is less than this threshold.

Table 3.10 presents such critical numbers for probability thresholds of 95, 50 and 5 

percent for different equivalence classes. Several observations can be made. First, for 

equivalence classes with fixed attribute types, substituting some attributes with the same 

number of attributes with larger m  decreases the probability of the existence of partition
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(compare the cases with m  =  1 with the class where half have m =  1 and half have m  = 2). 

Second, the number of attributes of variable types needed to reduce the probability is much 

larger than tha t of fixed types. Such behavior fully agrees with simulation-based approach.

We note tha t the distribution-free bound is less tight than the simulation-based estimate. 

At the same time, it provides a guaranteed upper bound. Next we discuss a lower bound.

3.4 .4  Em pirical Lower Bound

Observe that a probability that balanced partition exists in a given equivalence class can 

be estimated as a fraction of randomly generated instances for which feasible solutions were 

found for the BMASP integer programs. Such a fraction obviously is an estimate for the 

lower bound on the corresponding tt—probability (this is a lower bound because the IP 

solver may fail to find a balanced partition even when one exists). Therefore the lower 

boundary of the confidence interval for this fraction is a probabilistic lower bound.

Let n  be the number of instances generated and let r £ [0,1] be the fraction of these 

n  instances in which a balanced partition has been found. Let z be the required 1 — a /2  

percentile point of the standard Normal distribution (i.e., for the 99% confidence interval 

for the lower boundary, a  =  0.02 and so z = 2.3263). We use Wilson’s “score” method 

using asymptotic variance with no continuity correction. This method has been reported 

to perform the best on the instances where little is known about the random process causing 

r (Newcombe 1998), as is in our case. The lower and upper limits of the confidence interval 

are given by:
2nr  +  z 2 ±  ^ z 2 +  4n r(l — r)

2 (n +  z2)

In order for such an empirical approach to be effective, ’sufficiently many’ instances 

have to be generated for every equivalence class of interest. Also, because integer programs 

are NP-hard, in practice it is only possible to find out whether a feasible solution has been
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F ig u r e  3.8: 99% lower limit of the confidence interval for the empirical probability: the fraction of 

instances for which a balanced partition was found by solving BM ASP IP (a) for the equivalence classes 

with fixed attributes, (b) for the equivalence classes with variables attributes.

found within a pre-specified time limit. Thus the time limit has to be selected such that it 

is rarely reached in the cases when other estimates suggested that groups should exist. In 

our experiments for every equivalence class that we studied we generated n — 100 random 

BMASP instances , and set time limit to 900 seconds (in our experiments such time limit 

satisfies the abovementioned property). We use Mathematica to generate random attribute 

matrices with given column sums, and we use AMPL CPLEX to solve integer programs; 

all computations are done on a 3GHz desktop PC.

We present lower boundaries for the 99% confidence intervals for such empirical fractions 

in Figures 3.8 (a) and (b) for the cases with fixed and variable attribute types respectively. 

The general pattern is the same as in the DP estimates: for small C  there is a ‘plateau’ 

for which probability is effectively 100%, then probability sharply drops and from some C  

onwards it is basically zero.

We finally compare all three approaches we discuss in this section: DP simulation- 

based probability estimates, distribution-free upper bound and the empirical lower bound;
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Figure 3.9: Comparison between the empirical lower bound and its 98% double-sided confidence inter

vals, N-estim ate and distribution-free upper bound for the equivalence classes with G  =  5, k =  6 and C  

attributes. In (a), for the fixed type (1 ,1 ), in (b), for the variable type (2,3).

see Figure 3.9.

For fixed type, (a), three observations are evident. First, the gap between lower and 

upper bounds is large, and since DP estimate is closer to the lower bound, this is likely 

because the upper bound is not very tight. This is expected, since in the situation where the 

exact distribution of number of covered groups cannot be found, in attem pt to to construct 

a rigorous upper bound we used the worst-case distribution, which may be quite different 

from the actual.

Second, for small and medium C, the DP estimate is a rather tight upper bound for 

the empirical fraction - it is within the condifence intervals for the empirical bound. This 

suggests that our hybrid simulation-based approach indeed produces a good estimate. Thus, 

in practice, it can be used instead of a rigorous, yet very conservative distribution-free upper 

bound.

Finally, for larger C  that still result in non-zero probabilities, DP estimate is not close 

to the empirical fraction and outside of the confidence interval. We believe that these
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differences could be attributed to two factors. The DP estimate suggests that as C  increases 

the probability decreases, and thus in a given instance it becomes harder to find a feasible 

partition. At the same time, when C  grows, the BMASP integer program becomes larger 

and harder to solve (within a fixed time-limit). Thus, feasible partitions are less frequently 

found, while they could in fact exist.

This logic is even more evident in Figure 3.9 (b), where we compare these three estimates 

for classes with variable types. In particular, since for variable types the equivalence class 

must include more attributes in order for the probability that a partition exist to start to 

decrease, integer program becomes even larger and hence even harder, and so the difference 

between DP bound and empirical bound is larger than in the case with fixed types.

In other words, these differences highlight the limitations of the empirical approach to 

estimating probabilities that partitions exist and proves the that our analytical approaches 

are worth taking. In particular, from the standpoint of solving group balancing problems 

in practice using BMASP formulation, if DP estimate suggests high probability of the 

existence of partition, but it cannot be found, then perhaps one should try increasing time 

limit or using specialized constraint programming software or algorithms.

3.4.5 A nalysis o f R otm an Classes o f 2004 and 2005

This work was motivated by a successful implementation of a BMASP-based software pack

age, Advisor, to the problem of creating MBA study groups at the Rotman School of Man

agement, University of Toronto. In particular, Advisor was able to find balanced groups in 

all instances solved to date. Hence, our question was, to what extent can we expect that 

balanced groups can be found in the instances similar to those at Rotman. Now, when we 

developed our methodologies we can finally answer it.

In the Rotman problem, classes of 260-280 students must be partitioned into 40-50
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*(0,1) *(1,2) *(2,3) C G k

Class of 2004 6+1 6 1 13+1 46 6

Class of 2004 5+1 7 4 16+1 49 6

Table 3.11: Equivalence classes for the Rotman examples of classes of 2004 and 2005.

groups. In addition, Rotman school typically first splits the entire class into 4 sections of 

65-70 students and then partitions each section into 10-13 groups. The equivalence classes 

corresponding to the Rotman classes of 2004 and 2005 are described in Table 3.11. We 

note tha t in the actual application k € {5,6}, and therefore from Theorem 3.1 we add one 

attribute of type (0,1) to convert these to the classes with k =  6.

In the class of 2004, from the worst-case perspective, the amount of each individual 

attribute is too small to prohibit the existence of balanced groups. From Table 3.8 (at 

least for G = 2) there have to be at least 7 or more attributes of types (1,2) or (2,3). At 

the same time, the combination of different attributes can result in an instance where a 

balanced partition does not exist. However, the empirical probability for G =  5, ...40 is 

100%, see Table 3.12; DP probability estimate and distribution free UB are also 100% for 

all G (recall tha t to compute DP estimate we set transition probabilities to 1 from G > 5, 

thus increasing the number of groups beyond 5 does not affect this estimate). This is not 

surprising, from Figure 3.6 an instance must contain two/three times more attributes in 

order to have a probability of the existence of a partition different from 100%.

In the class of 2005, there are 7 attributes of type (1,2), which could result in an instance 

in which a partition does not exist (Table 3.8). As a result, empirical probabilities are lower; 

see Table 3.12. For G = 5,10 empirical probabilities show that balanced partitions are 

always found within the 15 minutes time limit, however, for G = 20,40 the time limit was 

frequently reached, therefore we believe that the actual probability is larger. DP estimate 

and distribution-free UB are also 100% for all G for the Rotman class of 2005, since, still 

the number of attributes is about twice as small as needed to see the probabilities decrease.
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Class of 2004 Class of 2005

G =  5 100 % 100 %

G  =  10 100 % 100 %

G =  20 100 % 72 %

G =  40 100 % 20 %

Table 3.12: Empirical probabilities for the Rotman classes of 2004 and 2005.

3.5 Conclusions

This theoretical work complements our practical work in constructing MBA study groups 

and creating Advisor group balancing software at the Rotman School of Management. In 

particular, we seek to what extent the success of the constraint-based Advisor in creating 

perfectly balanced groups can be attributed to a pure luck, and to what to the properties 

and relationships internal to a general constraint multiple attribute program.

We generalize the model underlying the Advisor to a general constraint problem, BMASP, 

such tha t any feasible solution to it describes the set of balanced groups, and study the 

worst case and probabilistic aspects of its performance.

We find that the worst-case could be indeed quite bad. As little as three attributes 

could lead to an instance in which a balanced partition does not exist; even further, even 

one balanced group may not exist in many cases, see Theorem 3.3. Such cases arise in 

the instances with the attributes of fixed type (i.e. with respect to which each group 

should contain the same number of objects with such attributes). This very restrictive 

conditions propagates to the the instances with the attributes of both fixed and variable 

types (where the number of objects with a given attribute per group may vary ±1) as well, 

see Theorem 3.6. However, in such cases the combination of attributes becomes important, 

see Theorems 3.4 and 3.5. All these results are obtained using the block-matrix approach, 

where we suggest a framework for constructing the instances that cannot be partitioned 

into balanced groups.
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We also suggest an alternative approach to worst-case analysis, based on cover problem 

representation. We use it to demonstrate that, as intuition suggests, BMASP problems with 

variable attributes are less constrained than those with fixed; that is on many occasions 

when in the fixed case the partition may not exist, it always exists in the variable case. We 

prove this claim analytically for specific attribute types, see Theorem 3.7 and otherwise 

demonstrate it numerically.

The cover problem representation also plays a central role in our probabilistic analysis. 

We suggest three approaches: (i) a recursion that can be used to estimate the probability 

that a balanced partition exists; (ii) an analytical distribution-free upper bound, and (iii) 

an empirical lower bound based on solving BMAPS integer programs.

We study these approaches on different variations of BMASP problem with fixed and 

variable types, and make several major observations. First, and quite intuitively, as the 

number of attributes grows, the probability declines. Further, the problem becomes more 

constrained as the relative density of attributes increases (that is, more objects per group 

must possess given attribute) and hence the probability that groups exists declines. Finally, 

the cases with variable attributes are indeed much less constrained than those with fixed, 

typically if for some number of attributes in the case with fixed types, the probability is 

zero, then for the same number with variable types it is still one.

Lastly, we study the Rotman problem instances of the classes of 2004 and 2005. Most 

importantly, our results suggest that the probability that balanced groups exist in the 

instances similar to those observed at Rotman is effectively equal one. Further, substantially 

more attributes (of variable types) could be added without decreasing this probability. 

However, in terms of finding such partitions in practice, Rotman instances are quite close 

to the ’limit’ for which the groups can be found by a ’brute-force’ computation used in 

the Advisor, which generates and solves BMASP integer program. This suggests that 

there could exist more elaborate specialized algorithms that could search for the balanced
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multiple-attribute partitions. Creating such algorithms is of interest for future research.
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(a) (b) (c) (d)

1 1 1 1 1
1 1 1 1 1

0 1 1 1 1
1 0 1 1 1
1 1 0 0 0

0 1 1 1 1
1 0 0 0 1
1 1 0 0 0
0 0 1 0 0
0 0 0 1 0

0 1 1 1 1
1 0 0 1 1
1 1 0 0 0
0 0 1 0 0

Figure 3.10: Constructing indivisible block matrices D for C = 5 and j  = 2. (a) - initialization step for 

q = 2; (b) - block (5,3,2); (c) - block (5,4,2) and (d) - block (5,5,2).

A ppendix

B u ild in g  ind iv isib le  blocks

Next we study indivisible blocks. Note that Definition 1 implies q < p. Further, if p = q 

then the block matrix has all entries equal 1. Thus such a block is divisible, since it consists 

of p blocks (C, 1,1). For q < p — 1 we obtain the following result.

P ro p o s itio n  3.1 For every C,p  >  1, p < C there exist indivisible blocks (C,p, j )  for all 

j  = 1,2, ...p — 1.

P ro o f. Consider arbitrary C  and j  < p — 1 < C — 1. If j  =  1 then the proof is trivial: 

consider (p x C) matrix D  where the only non-zero entries are diti = 1 for i = 1,2, ...p and 

dPj = 1 for j  =  p  +  1, ...C. By definition it is a block, which is indivisible since any subset 

of rows of cardinality less than p contains an all-zero column.

For j  > 2 we provide an algorithm for constructing indivisible blocks (C, p , j ) for p =  

j  + 1, ...C. The algorithm is illustrated in Figure 3.10.

To initialize the algorithm, create j  row vectors ( l x C )  with norm C ; i.e. let dst =  1 

for £ =  1,2, ...C, s =  1,2, ...j, (see (a) in Figure 3.10).

To create block (C , p , j ) for p = j  + 1  let dj+ =  1, dj+ljX = 0 otherwise, and let da = 0 

for i =  1,2, ...j. Intuitively this procedure ’’drags and drops” ith ”1” from row i to the ith
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component of j  +  1st row (see (b) in Figure 3.10; corresponding entries are highlighted in 

bold). The resulting ((j +  1) x C) matrix D  is by definition a (C , p , j ) block for p — j  +  1.

To create block (C, p , j ) for p =  j  +  2, ...C take block (C , j  +  1 , j )  (created above) and 

let dij - i  = 1, dix — 0 otherwise and let dJ)t i = 0 for i =  j  +  2, ...p. Intuitively this 

procedure ’’drags and drops” ith ”1” form row j  into a new unit norm row with ”1” in ith 

component (see (c) and (d) in Figure 3.10 for p =  4, 5 respectively). The resulting matrix 

by construction is a (C , p , j ) block.

To observe that blocks created this way are indivisible, first consider the case with 

p = j  +  1. Let r,:, i =  l,2 , ...j +  1 be the rows in D. Let D' be the subset of rows that form 

a sub-block. By definition there exists another sub-block, D" ^  0, such that D' n  D" =  0 

and D'  U D" =  D  =  {1,2, ...j + 1}. Suppose rj+1 e  D'\ note this can be done without loss 

of generality. Then by construction for all row indices, i, such that r, € D", r,(z) =  0, while 

rj(z') =  1 for all i' > j  + 1. Thus columns j  +  1, ...C of D" have norms \D"\1 while columns 

1 , .. . j  have norms <  \D"\ — 1. Hence D" is not a block, which is a contradiction.

Now consider the case with p =  j  +  2, ...C. Same as above consider sub-blocks D' and 

D " , where rJ+i 6 D'. Since by construction diq =  0 for q =  1, ...j, but d y - i =  1 for 

i =  j  +  2, ...p, any subset of rows j  +  2, ...p cannot form a sub-block. Therefore D" contains 

1 <  Q <  j  rows from 1, ...j. Then columns 1, ...j of D" have norms <  Q — 1, but column 

C  has norm Q, which is a contradiction. Therefore (C.p. j )  is indivisible. ■
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